High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: A more precise and personalized gliomas management

胶质瘤 流体衰减反转恢复 无线电技术 接收机工作特性 医学 波形蛋白 特征选择 Lasso(编程语言) 逻辑回归 计算机科学 免疫组织化学 肿瘤科 人工智能 病理 磁共振成像 内科学 放射科 万维网 癌症研究
作者
Jing Li,Siyun Liu,Ying� Qin,Yan Zhang,Ning Wang,Huaijun Liu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:15 (1): e0227703-e0227703 被引量:46
标识
DOI:10.1371/journal.pone.0227703
摘要

Objective To investigate the performance of high-order radiomics features and models based on T2-weighted fluid-attenuated inversion recovery (T2 FLAIR) in predicting the immunohistochemical biomarkers of glioma, in order to execute a non-invasive, more precise and personalized glioma disease management. Methods 51 pathologically confirmed gliomas patients committed in our hospital from March 2015 to June 2018 were retrospective analysis, and Ki-67, vimentin, S-100 and CD34 immunohistochemical data were collected. The volumes of interest (VOIs) were manually sketched and the radiomics features were extracted. Feature reduction was performed by ANOVA+ Mann-Whiney, spearman correlation analysis, least absolute shrinkage and selection operator (LASSO) and Gradient descent algorithm (GBDT). SMOTE technique was used to solve the data bias between two groups. Comprehensive binary logistic regression models were established. Area under the ROC curves (AUC), sensitivity, specificity and accuracy were used to evaluate the predict performance of models. Models reliability were decided according to the standard net benefit of the decision curves. Results Four clusters of significant features were screened out and four predicting models were constructed. AUC of Ki-67, S-100, vimentin and CD34 models were 0.713, 0.923, 0.854 and 0.745, respectively. The sensitivities were 0.692, 0.893, 0.875 and 0.556, respectively. The specificities were: 0.667, 0.905, 0.722, and 0.875, with accuracy of 0.660, 0.898, 0.738, and 0.667, respectively. According to the decision curves, the Ki-67, S-100 and vimentin models had reference values. Conclusion The radiomics features based on T2 FLAIR can potentially predict the Ki-67, S-100, vimentin and CD34 expression. Radiomics model were expected to be a computer-intelligent, non-invasive, accurate and personalized management method for gliomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
害羞大白菜完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
CipherSage应助Capybara采纳,获得10
9秒前
哪吒大闹小布丁完成签到,获得积分10
9秒前
LKSkywalker完成签到,获得积分10
11秒前
Hello应助欢呼山雁采纳,获得10
12秒前
小马甲应助超级清涟采纳,获得10
13秒前
布丁大师完成签到,获得积分10
13秒前
fly圈圈呀完成签到,获得积分10
19秒前
Kkxx发布了新的文献求助10
19秒前
20秒前
Kirin完成签到,获得积分10
21秒前
Capybara完成签到,获得积分10
21秒前
朴素的易槐完成签到 ,获得积分10
22秒前
23秒前
25秒前
26秒前
27秒前
豆豆发布了新的文献求助10
29秒前
欢呼山雁发布了新的文献求助10
30秒前
要努力搞科研啦完成签到,获得积分20
31秒前
gxc完成签到,获得积分20
37秒前
caramel完成签到,获得积分20
41秒前
晚风完成签到,获得积分10
44秒前
搜集达人应助eureka采纳,获得10
45秒前
46秒前
长生完成签到,获得积分10
47秒前
YaoZhang完成签到 ,获得积分10
48秒前
海贼王的男人完成签到 ,获得积分10
49秒前
lgl发布了新的文献求助10
50秒前
50秒前
明明发布了新的文献求助10
54秒前
完美世界应助LCFXR采纳,获得10
59秒前
555完成签到,获得积分10
59秒前
美好向日葵完成签到,获得积分10
59秒前
隐形曼青应助明明采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578