Maximum Mutation Reinforcement Learning for Scalable Control

强化学习 可扩展性 计算机科学 超参数 机器学习 人工智能 人口 数据库 社会学 人口学
作者
Karush Suri,Xiao Qi Shi,Konstantinos N. Plataniotis,Yuri Lawryshyn
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2007.13690
摘要

Advances in Reinforcement Learning (RL) have demonstrated data efficiency and optimal control over large state spaces at the cost of scalable performance. Genetic methods, on the other hand, provide scalability but depict hyperparameter sensitivity towards evolutionary operations. However, a combination of the two methods has recently demonstrated success in scaling RL agents to high-dimensional action spaces. Parallel to recent developments, we present the Evolution-based Soft Actor-Critic (ESAC), a scalable RL algorithm. We abstract exploration from exploitation by combining Evolution Strategies (ES) with Soft Actor-Critic (SAC). Through this lens, we enable dominant skill transfer between offsprings by making use of soft winner selections and genetic crossovers in hindsight and simultaneously improve hyperparameter sensitivity in evolutions using the novel Automatic Mutation Tuning (AMT). AMT gradually replaces the entropy framework of SAC allowing the population to succeed at the task while acting as randomly as possible, without making use of backpropagation updates. In a study of challenging locomotion tasks consisting of high-dimensional action spaces and sparse rewards, ESAC demonstrates improved performance and sample efficiency in comparison to the Maximum Entropy framework. Additionally, ESAC presents efficacious use of hardware resources and algorithm overhead. A complete implementation of ESAC can be found at karush17.github.io/esac-web/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文艺寒云完成签到 ,获得积分20
1秒前
pluto应助Ryan采纳,获得50
1秒前
EmmaZhu发布了新的文献求助20
1秒前
ws完成签到,获得积分10
1秒前
2秒前
2秒前
友好白凡发布了新的文献求助10
2秒前
脑洞疼应助瞬华采纳,获得10
3秒前
3秒前
julia发布了新的文献求助10
3秒前
万能图书馆应助lin采纳,获得10
4秒前
八卦巧克力完成签到,获得积分10
4秒前
华仔应助Kvolu29采纳,获得10
5秒前
5秒前
yw完成签到 ,获得积分20
5秒前
5秒前
5秒前
6秒前
李爱国应助Queena采纳,获得10
6秒前
完美世界应助wxfaixx采纳,获得30
6秒前
FreeRay完成签到,获得积分10
6秒前
7秒前
小麦大可完成签到,获得积分20
7秒前
7秒前
LPeaQ应助淼淼采纳,获得10
7秒前
7秒前
唐僧肉臊子面完成签到,获得积分10
8秒前
万能图书馆应助kjidh采纳,获得10
9秒前
10秒前
爆米花应助猫困采纳,获得10
10秒前
11秒前
12秒前
热心市民小红花应助Allen采纳,获得10
12秒前
斯文败类应助张一二二二采纳,获得10
13秒前
13秒前
13秒前
cuberblue完成签到 ,获得积分10
13秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198