材料科学
离子
陶瓷
阴极
快离子导体
纳米技术
电极
化学
电解质
物理化学
复合材料
有机化学
作者
Zhengyan Lun,Bin Ouyang,Deok‐Hwang Kwon,Yang Ha,Emily E. Foley,Tzu‐Yang Huang,Zijian Cai,Hyunchul Kim,Mahalingam Balasubramanian,Yingzhi Sun,Jianping Huang,Yaosen Tian,Haegyeom Kim,Bryan D. McCloskey,Wanli Yang,Raphaële J. Clément,Huiwen Ji,Gerbrand Ceder
出处
期刊:Nature Materials
[Springer Nature]
日期:2020-10-12
卷期号:20 (2): 214-221
被引量:399
标识
DOI:10.1038/s41563-020-00816-0
摘要
High-entropy (HE) ceramics, by analogy with HE metallic alloys, are an emerging class of solid solutions composed of a large number of species. These materials offer the benefit of large compositional flexibility and can be used in a wide variety of applications, including thermoelectrics, catalysts, superionic conductors and battery electrodes. We show here that the HE concept can lead to very substantial improvements in performance in battery cathodes. Among lithium-ion cathodes, cation-disordered rocksalt (DRX)-type materials are an ideal platform within which to design HE materials because of their demonstrated chemical flexibility. By comparing a group of DRX cathodes containing two, four or six transition metal (TM) species, we show that short-range order systematically decreases, whereas energy density and rate capability systematically increase, as more TM cation species are mixed together, despite the total metal content remaining fixed. A DRX cathode with six TM species achieves 307 mAh g−1 (955 Wh kg−1) at a low rate (20 mA g−1), and retains more than 170 mAh g−1 when cycling at a high rate of 2,000 mA g−1. To facilitate further design in this HE DRX space, we also present a compatibility analysis of 23 different TM ions, and successfully synthesize a phase-pure HE DRX compound containing 12 TM species as a proof of concept. High-entropy ceramics are solid solutions offering compositional flexibility and wide variety of applicability. High-entropy concepts are shown to lead to substantial performance improvement in cation-disordered rocksalt-type cathodes for Li-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI