When Endoplasmic Reticulum Proteostasis Meets the DNA Damage Response

蛋白质稳态 生物 内质网 DNA损伤 细胞生物学 DNA 遗传学
作者
Matías González-Quiroz,Alice Blondel,Alfredo Sagredo,Claudio Hetz,Éric Chevet,Rémy Pedeux
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:30 (11): 881-891 被引量:74
标识
DOI:10.1016/j.tcb.2020.09.002
摘要

Alteration in the genome integrity has been associated with disruption of the endoplasmic reticulum (ER) proteostasis. The unfolded protein response (UPR) and the DNA damage response (DDR) play important roles in the development and progression of several diseases including cancer. The UPR sensors IRE1α, PERK, and ATF6α play a role in the response to genotoxic and ER stress in cells by interacting with DNA damage proteins (e.g., ATM, ATR, p53, p21, Chk1, and Chk2). Crosstalk between UPR and DDR may contribute to cancer progression. Indeed, CHOP and p53 play a central role in the crosstalk between UPR and DDR. The pharmacologic modulation of the UPR could enhance the effectiveness of chemotherapy and radiotherapy. Sustaining both proteome and genome integrity (GI) requires the integration of a wide range of mechanisms and signaling pathways. These comprise, in particular, the unfolded protein response (UPR) and the DNA damage response (DDR). These adaptive mechanisms take place respectively in the endoplasmic reticulum (ER) and in the nucleus. UPR and DDR alterations are associated with aging and with pathologies such as degenerative diseases, metabolic and inflammatory disorders, and cancer. We discuss the emerging signaling crosstalk between UPR stress sensors and the DDR, as well as their involvement in cancer biology. Sustaining both proteome and genome integrity (GI) requires the integration of a wide range of mechanisms and signaling pathways. These comprise, in particular, the unfolded protein response (UPR) and the DNA damage response (DDR). These adaptive mechanisms take place respectively in the endoplasmic reticulum (ER) and in the nucleus. UPR and DDR alterations are associated with aging and with pathologies such as degenerative diseases, metabolic and inflammatory disorders, and cancer. We discuss the emerging signaling crosstalk between UPR stress sensors and the DDR, as well as their involvement in cancer biology. a key endoplasmic reticulum (ER) chaperone and master regulator of ER functions under ER stress. The detection of misfolded proteins by the three UPR sensors is partly dependent on BiP. any factor that is independent of the genetic background or DNA alterations, such as hypoxia, glucose deprivation, and inadequate amino acid supplies. any factor that is dependent on the genetic background or DNA, such as oncogene activation, chromosome number alterations, chromosome rearrangements, and hyperploidy. a cellular response that involves DNA damage recognition, followed by the initiation of a cellular signaling cascade that promotes DNA repair and can modulate cell-cycle progression, chromatin structure, and transcription both at sites of DNA damage and globally. The DDR induced by DSBs is controlled by three related kinases: ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PKcs). different classes of DNA damage such as UV light, radiation, DNA-damaging drugs, and oxidative stress can lead to DNA rupture in both strands. If DNA is not repaired correctly, DSBs can cause deletions, translocations, and fusions of the DNA. the principal quality-control mechanism that targets misfolded ER proteins for cytosolic degradation. ERAD targets are destroyed by the cytoplasmic ubiquitin–proteasome system. Many ER chaperones participate in the ERAD complex, including BiP, EDEM1, OS9, and XTP3B. The UPR sensor IRE1α and SEL1L– HRD1 complexes are the two most conserved branches of ER quality-control mechanisms. includes all processes that maintain the integrity of DNA, such as sensing, signaling, and repair of DNA damage, processing of DNA damage in the context of chromatin and chromosomes, cell-cycle checkpoint control, and apoptosis control. Effective maintenance of GI is essential for healthy organisms, in aging, and for disease prevention. upon DSB induction, the histone variant H2AX is phosphorylated on serine 139 by ATM, ATR, or DNA-PK, generating phosphorylated H2AX, namely γH2AX. γH2AX induction is one of the earliest events detected in cells and human biopsies following exposure to DNA damaging agents. γH2AX is a key marker of DSB damage, allowing the activation and relocalization of repair proteins to DSB sites as well as signal amplification. imbalance between the production of reactive oxygen species (ROS, free radicals) and antioxidant defenses. Amino acids such as proline, arginine, lysine, and threonine are particularly vulnerable to oxidative damage, both as free molecules or within proteins. Moreover, oxidative damage can also affect the integrity and stability of DNA and RNA. a network of interconnected quality-control processes in the cell that maintain a functional proteome. Chaperones, foldases, oxidoreductases, and glycosylating enzymes ensure that secretory proteins are properly folded, modified, and assembled into multiprotein complexes in the ER before they transit further downstream in the secretory pathway. a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell. The UPR is transduced by three principal ER-resident proteins: inositol-requiring protein 1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription factor 6α (ATF6α).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qiushui发布了新的文献求助10
1秒前
平硕完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
小个白完成签到,获得积分10
5秒前
上官若男应助zz采纳,获得10
5秒前
yeyeye完成签到,获得积分20
5秒前
浮游应助achulw采纳,获得10
6秒前
忧郁丹彤发布了新的文献求助10
6秒前
糯米丸子完成签到,获得积分10
7秒前
butterfly0完成签到,获得积分10
7秒前
yeyeye发布了新的文献求助10
8秒前
英姑应助傻子与白痴采纳,获得10
8秒前
英俊的铭应助K先生采纳,获得10
8秒前
福娃选手发布了新的文献求助10
8秒前
挽星完成签到 ,获得积分10
9秒前
学术小猫完成签到 ,获得积分10
10秒前
mm发布了新的文献求助10
11秒前
无他完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
小二郎应助ttt采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
pluto应助mao采纳,获得10
12秒前
活力的梦蕊完成签到,获得积分10
13秒前
科研通AI5应助xu采纳,获得10
13秒前
garden发布了新的文献求助20
14秒前
15秒前
尉迟靖仇完成签到,获得积分10
15秒前
15秒前
log完成签到,获得积分10
15秒前
15秒前
15秒前
小和发布了新的文献求助10
15秒前
16秒前
宓不评完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920881
求助须知:如何正确求助?哪些是违规求助? 4192265
关于积分的说明 13020962
捐赠科研通 3963415
什么是DOI,文献DOI怎么找? 2172449
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099258