Random forests as a tool to understand the snow depth distribution and its evolution in mountain areas

积雪 地形 自然地理学 比例(比率) 空间分布 地质学 环境科学 遥感 地貌学 地理 地图学
作者
Jesús Revuelto,Paul Billecocq,François Tuzet,Bertrand Cluzet,Maxim Lamare,Fanny Larue,Marie Dumont
出处
期刊:Hydrological Processes [Wiley]
卷期号:34 (26): 5384-5401 被引量:46
标识
DOI:10.1002/hyp.13951
摘要

Abstract The small scale distribution of the snowpack in mountain areas is highly heterogeneous, and is mainly controlled by the interactions between the atmosphere and local topography. However, the influence of different terrain features in controlling variations in the snow distribution depends on the characteristics of the study area. As this leads to uncertainties in high spatial resolution snowpack simulations, a deeper understanding of the role of terrain features on the small scale distribution of snow depth is required. This study applied random forest algorithms to investigate the temporal evolution of snow depth in complex alpine terrain using as predictors various topographical variables and in situ snow depth observations at a single location. The high spatial resolution (1 m x 1 m) snow depth distribution database used in training and evaluating the random forests was derived from terrestrial laser scanner (TLS) devices at three study sites, in the French Alps (2 sites) and the Spanish Pyrenees (1 site). The results show the major importance of two topographic variables, the topographic position index and the maximum upwind slope parameter. For these variables the search distances and directions depended on the characteristics of each site and the TLS acquisition date, but are consistent across sites and are tightly related to main wind directions. The weight of the different topographic variables on explaining snow distribution evolves while major snow accumulation events still take place and minor changes are observed after reaching the annual snow accumulation peak. Random forests have demonstrated good performance when predicting snow distribution for the sites included in the training set with R 2 values ranging from 0.82 to 0.94 and mean absolute errors always below 0.4 m. Oppositely, this algorithm failed when used to predict snow distribution for sites not included in the training set, with mean absolute errors above 0.8 m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆发布了新的文献求助10
1秒前
百宝发布了新的文献求助10
1秒前
神勇的天菱完成签到,获得积分10
3秒前
kk发布了新的文献求助10
3秒前
顺利的雁发布了新的文献求助10
6秒前
研友_ZzrWKZ完成签到 ,获得积分10
7秒前
9秒前
爆米花应助豆豆采纳,获得10
10秒前
Jamie2完成签到,获得积分10
10秒前
11秒前
钰宁完成签到,获得积分10
14秒前
realityjunky完成签到,获得积分10
14秒前
15秒前
16秒前
此晴可待发布了新的文献求助10
16秒前
17秒前
17秒前
SSS完成签到,获得积分10
18秒前
昏睡的蟠桃发布了新的文献求助100
19秒前
20秒前
深情安青应助health采纳,获得10
20秒前
lmy完成签到,获得积分10
20秒前
张俊敏发布了新的文献求助10
21秒前
考研小白发布了新的文献求助10
21秒前
zt1812431172完成签到,获得积分10
22秒前
22秒前
Owen应助幸福果汁采纳,获得10
24秒前
24秒前
Ava应助高高紫烟采纳,获得10
24秒前
24秒前
嘟嘟噜发布了新的文献求助10
26秒前
百宝完成签到,获得积分10
27秒前
LLX123完成签到 ,获得积分10
28秒前
sdsa发布了新的文献求助10
29秒前
30秒前
轻舟完成签到 ,获得积分10
30秒前
30秒前
张雅雅发布了新的文献求助10
30秒前
li8888lili8888完成签到 ,获得积分10
30秒前
张俊敏完成签到,获得积分20
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619