Random forests as a tool to understand the snow depth distribution and its evolution in mountain areas

积雪 地形 自然地理学 比例(比率) 空间分布 地质学 环境科学 遥感 地貌学 地理 地图学
作者
Jesús Revuelto,Paul Billecocq,François Tuzet,Bertrand Cluzet,Maxim Lamare,Fanny Larue,Marie Dumont
出处
期刊:Hydrological Processes [Wiley]
卷期号:34 (26): 5384-5401 被引量:46
标识
DOI:10.1002/hyp.13951
摘要

Abstract The small scale distribution of the snowpack in mountain areas is highly heterogeneous, and is mainly controlled by the interactions between the atmosphere and local topography. However, the influence of different terrain features in controlling variations in the snow distribution depends on the characteristics of the study area. As this leads to uncertainties in high spatial resolution snowpack simulations, a deeper understanding of the role of terrain features on the small scale distribution of snow depth is required. This study applied random forest algorithms to investigate the temporal evolution of snow depth in complex alpine terrain using as predictors various topographical variables and in situ snow depth observations at a single location. The high spatial resolution (1 m x 1 m) snow depth distribution database used in training and evaluating the random forests was derived from terrestrial laser scanner (TLS) devices at three study sites, in the French Alps (2 sites) and the Spanish Pyrenees (1 site). The results show the major importance of two topographic variables, the topographic position index and the maximum upwind slope parameter. For these variables the search distances and directions depended on the characteristics of each site and the TLS acquisition date, but are consistent across sites and are tightly related to main wind directions. The weight of the different topographic variables on explaining snow distribution evolves while major snow accumulation events still take place and minor changes are observed after reaching the annual snow accumulation peak. Random forests have demonstrated good performance when predicting snow distribution for the sites included in the training set with R 2 values ranging from 0.82 to 0.94 and mean absolute errors always below 0.4 m. Oppositely, this algorithm failed when used to predict snow distribution for sites not included in the training set, with mean absolute errors above 0.8 m.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yinnnnn完成签到,获得积分20
刚刚
1秒前
1秒前
blueming发布了新的文献求助10
2秒前
2秒前
2秒前
木鱼完成签到 ,获得积分10
2秒前
cc发布了新的文献求助10
3秒前
3秒前
雷九万班发布了新的文献求助10
3秒前
adamchris发布了新的文献求助100
4秒前
zz完成签到,获得积分10
5秒前
aniu发布了新的文献求助10
6秒前
6秒前
momo发布了新的文献求助20
6秒前
半圆亻发布了新的文献求助10
6秒前
6秒前
雷锋发布了新的文献求助30
6秒前
鱼小汤圆发布了新的文献求助10
7秒前
YK完成签到,获得积分20
7秒前
何浩发布了新的文献求助20
7秒前
完美的芙蓉完成签到 ,获得积分10
8秒前
xiao完成签到,获得积分10
8秒前
wenwen发布了新的文献求助10
8秒前
10秒前
景泰蓝发布了新的文献求助10
10秒前
在水一方应助HelenZ采纳,获得10
10秒前
zhang完成签到,获得积分10
11秒前
11秒前
wdj完成签到,获得积分10
11秒前
清脆的萍完成签到 ,获得积分10
12秒前
ydxhh完成签到,获得积分10
12秒前
小柿子完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
zz完成签到,获得积分20
14秒前
科研通AI2S应助jiejie采纳,获得10
14秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Elastic local buckling behaviour of corroded cold-formed steel columns 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180500
求助须知:如何正确求助?哪些是违规求助? 2830796
关于积分的说明 7981033
捐赠科研通 2492477
什么是DOI,文献DOI怎么找? 1329555
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954