已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Maintaining large-scale gas layer by creating wettability difference on surfaces under water

润湿 滑脱 阻力 图层(电子) 材料科学 接触角 打滑(空气动力学) 空气层 纳米技术 复合材料 机械 热力学 物理
作者
Haibao Hu,Dezheng Wang,Luyao Bao,Jun Wen,Zhaozhu Zhang
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:65 (13): 134701-134701 被引量:8
标识
DOI:10.7498/aps.65.134701
摘要

Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8, 84.7, 103.6 and 144.0 in apparent contact angle, respectively, the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sujingbo完成签到 ,获得积分10
刚刚
小葵发布了新的文献求助10
2秒前
3秒前
在水一方应助JoeyCory采纳,获得10
4秒前
烟花应助zoey采纳,获得10
6秒前
wen完成签到 ,获得积分10
6秒前
6秒前
111完成签到,获得积分10
7秒前
NPC应助科研通管家采纳,获得30
8秒前
yx_cheng应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
13秒前
寒风完成签到,获得积分10
13秒前
16秒前
Sainfoin关注了科研通微信公众号
17秒前
Dsunflower完成签到 ,获得积分10
19秒前
王鹏发布了新的文献求助10
19秒前
20秒前
无与伦比发布了新的文献求助10
22秒前
英姑应助cc采纳,获得10
23秒前
26秒前
小葵完成签到,获得积分10
27秒前
29秒前
香蕉觅云应助sgc采纳,获得10
30秒前
Zr发布了新的文献求助30
30秒前
kkjl发布了新的文献求助10
30秒前
33秒前
tiantian关注了科研通微信公众号
35秒前
36秒前
Archers完成签到 ,获得积分10
37秒前
38秒前
39秒前
FashionBoy应助专注的傲白采纳,获得10
40秒前
42秒前
cc发布了新的文献求助10
44秒前
飞羽发布了新的文献求助10
45秒前
晚晨完成签到 ,获得积分10
46秒前
tengli发布了新的文献求助10
47秒前
爱静静应助诚心的月光采纳,获得10
49秒前
50秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314113
求助须知:如何正确求助?哪些是违规求助? 2946548
关于积分的说明 8530507
捐赠科研通 2622198
什么是DOI,文献DOI怎么找? 1434385
科研通“疑难数据库(出版商)”最低求助积分说明 665268
邀请新用户注册赠送积分活动 650832