Maintaining large-scale gas layer by creating wettability difference on surfaces under water

润湿 滑脱 阻力 图层(电子) 材料科学 接触角 打滑(空气动力学) 空气层 纳米技术 复合材料 机械 热力学 物理
作者
Haibao Hu,Dezheng Wang,Luyao Bao,Jun Wen,Zhaozhu Zhang
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:65 (13): 134701-134701 被引量:9
标识
DOI:10.7498/aps.65.134701
摘要

Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8, 84.7, 103.6 and 144.0 in apparent contact angle, respectively, the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凌云完成签到,获得积分10
刚刚
1秒前
小白完成签到 ,获得积分10
2秒前
nini发布了新的文献求助10
3秒前
思源应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
spc68应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
spc68应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
谢大喵发布了新的文献求助20
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
yiiiping应助科研通管家采纳,获得10
4秒前
小酒窝周周完成签到 ,获得积分10
4秒前
田様应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
x94264482应助科研通管家采纳,获得10
4秒前
颜倾完成签到,获得积分10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749293
求助须知:如何正确求助?哪些是违规求助? 5457273
关于积分的说明 15363115
捐赠科研通 4888714
什么是DOI,文献DOI怎么找? 2628675
邀请新用户注册赠送积分活动 1576972
关于科研通互助平台的介绍 1533693