Maintaining large-scale gas layer by creating wettability difference on surfaces under water

润湿 滑脱 阻力 图层(电子) 材料科学 接触角 打滑(空气动力学) 空气层 纳米技术 复合材料 机械 热力学 物理
作者
Haibao Hu,Dezheng Wang,Luyao Bao,Jun Wen,Zhaozhu Zhang
出处
期刊:Chinese Physics [Science Press]
卷期号:65 (13): 134701-134701 被引量:8
标识
DOI:10.7498/aps.65.134701
摘要

Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8, 84.7, 103.6 and 144.0 in apparent contact angle, respectively, the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HSY发布了新的文献求助10
刚刚
星辰大海应助闪闪的乐松采纳,获得10
刚刚
王易云发布了新的文献求助10
1秒前
万物生完成签到,获得积分10
1秒前
Owen应助专一的幻莲采纳,获得10
3秒前
旎旎完成签到,获得积分10
5秒前
5秒前
6秒前
Hello应助皮灵犀采纳,获得10
6秒前
6秒前
summer完成签到,获得积分20
6秒前
6秒前
7秒前
WANG完成签到,获得积分10
8秒前
HSY完成签到,获得积分10
8秒前
8秒前
浅海挽风完成签到,获得积分10
9秒前
li完成签到 ,获得积分10
10秒前
md发布了新的文献求助10
10秒前
邓佳鑫Alan应助qyj采纳,获得50
10秒前
芝士发布了新的文献求助10
10秒前
11秒前
11秒前
C47发布了新的文献求助10
12秒前
12秒前
隐形的杨发布了新的文献求助10
12秒前
JamesPei应助summer采纳,获得10
12秒前
merryorange完成签到,获得积分20
13秒前
小陈发布了新的文献求助10
14秒前
suyi发布了新的文献求助10
14秒前
14秒前
14秒前
16秒前
16秒前
壮观以松发布了新的文献求助10
17秒前
科研通AI5应助初a采纳,获得30
17秒前
皮灵犀发布了新的文献求助10
18秒前
小陈完成签到,获得积分20
19秒前
猫小发布了新的文献求助10
20秒前
碧蓝亦玉完成签到 ,获得积分10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3750881
求助须知:如何正确求助?哪些是违规求助? 3294389
关于积分的说明 10085631
捐赠科研通 3009587
什么是DOI,文献DOI怎么找? 1652784
邀请新用户注册赠送积分活动 787719
科研通“疑难数据库(出版商)”最低求助积分说明 752377