Maintaining large-scale gas layer by creating wettability difference on surfaces under water

润湿 滑脱 阻力 图层(电子) 材料科学 接触角 打滑(空气动力学) 空气层 纳米技术 复合材料 机械 热力学 物理
作者
Haibao Hu,Dezheng Wang,Luyao Bao,Jun Wen,Zhaozhu Zhang
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:65 (13): 134701-134701 被引量:9
标识
DOI:10.7498/aps.65.134701
摘要

Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8, 84.7, 103.6 and 144.0 in apparent contact angle, respectively, the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ng完成签到 ,获得积分10
刚刚
可爱可愁完成签到,获得积分10
刚刚
CQ完成签到 ,获得积分10
1秒前
Fezz完成签到 ,获得积分10
2秒前
梓树完成签到,获得积分10
3秒前
cici妈完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
愉快道之完成签到 ,获得积分10
7秒前
shero快毕业完成签到 ,获得积分10
9秒前
12秒前
坚定的小蘑菇完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
橘子海完成签到 ,获得积分10
21秒前
可爱的函函应助orangel采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
dingyunfei完成签到,获得积分10
26秒前
29秒前
友好灵阳完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
37秒前
LY完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
司空御宇完成签到 ,获得积分10
42秒前
smile完成签到,获得积分10
42秒前
JamesPei应助xiuxiu125采纳,获得10
42秒前
Song完成签到 ,获得积分10
42秒前
科目三应助好运旺旺采纳,获得10
43秒前
坐宝马吃地瓜完成签到 ,获得积分10
47秒前
一只榴莲完成签到,获得积分10
48秒前
好运旺旺完成签到 ,获得积分20
50秒前
量子星尘发布了新的文献求助10
53秒前
Henry完成签到,获得积分10
53秒前
634301059完成签到 ,获得积分10
1分钟前
1分钟前
Luna爱科研完成签到 ,获得积分10
1分钟前
好运旺旺发布了新的文献求助10
1分钟前
灯座完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
灵巧的长颈鹿完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856