已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Maintaining large-scale gas layer by creating wettability difference on surfaces under water

润湿 滑脱 阻力 图层(电子) 材料科学 接触角 打滑(空气动力学) 空气层 纳米技术 复合材料 机械 热力学 物理
作者
Haibao Hu,Dezheng Wang,Luyao Bao,Jun Wen,Zhaozhu Zhang
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:65 (13): 134701-134701 被引量:9
标识
DOI:10.7498/aps.65.134701
摘要

Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8, 84.7, 103.6 and 144.0 in apparent contact angle, respectively, the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Innogen发布了新的文献求助10
1秒前
1秒前
Ghiocel完成签到,获得积分10
2秒前
2秒前
2秒前
yuzi完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
三年六班李子明完成签到 ,获得积分10
8秒前
华仔应助Innogen采纳,获得10
12秒前
miaomiao123完成签到 ,获得积分10
16秒前
17秒前
天真的枕头完成签到,获得积分10
17秒前
Thi完成签到,获得积分10
20秒前
Lucas应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
浮浮世世应助科研通管家采纳,获得30
22秒前
浮浮世世应助科研通管家采纳,获得30
23秒前
fjkssadjk完成签到,获得积分10
23秒前
Thi发布了新的文献求助10
24秒前
宝剑葫芦完成签到 ,获得积分10
28秒前
30秒前
田様应助exosome采纳,获得10
31秒前
Benjamin完成签到 ,获得积分10
32秒前
32秒前
下一周完成签到,获得积分10
36秒前
李颜龙完成签到,获得积分10
37秒前
qqzone发布了新的文献求助10
37秒前
ay发布了新的文献求助20
38秒前
托塔大王完成签到,获得积分10
43秒前
Sieg完成签到 ,获得积分10
47秒前
47秒前
47秒前
51秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595590
求助须知:如何正确求助?哪些是违规求助? 4680876
关于积分的说明 14817799
捐赠科研通 4650797
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503487
关于科研通互助平台的介绍 1469726