Elevated levels of reactive oxygen species (ROS) have commonly been implicated in a variety of diseases, including cancer, inflammation, and neurodegenerative diseases. In light of significant differences in ROS levels between the nonpathogenic and pathological tissues, an increasing number of ROS-responsive prodrugs, probes, and theranostic prodrugs have been developed for the targeted treatment and precise diagnosis of ROS-related diseases. This review will summarize and provide insight into recent advances in ROS-responsive prodrugs, fluorescent probes, and theranostic prodrugs, with applications to different ROS-related diseases and various subcellular organelle-targetable and disease-targetable features. The ROS-responsive moieties, the self-immolative linkers, and the typical activation mechanism for the ROS-responsive release are also summarized and discussed.