居里温度
材料科学
超顺磁性
凝聚态物理
纳米颗粒
矫顽力
弹性体
磁化
铁磁性
各向异性
核磁共振
复合材料
纳米技术
磁场
光学
物理
量子力学
作者
Yu. I. Dzhezherya,Wei Xu,S. V. Cherepov,Yu. B. Skirta,В. М. Каліта,Andrii Bodnaruk,N.A. Liedienov,A. V. Pashchenko,Igor V. Fesych,Bingbing Liu,G. G. Levchenko
标识
DOI:10.1016/j.matdes.2020.109281
摘要
A magnetoactive elastomer (MAE) consisting of single-domain La0.6Ag0.2Mn1.2O3 nanoparticles with a Curie temperature close to room temperature (TC = 308 K) in a silicone matrix has been prepared and comprehensively studied. It has been found that MAE particles are magnetized superparamagnetically with a low coercivity below 10 Oe at room temperature and above. The influence of magnetic anisotropy on the appearance of torque is justified. A coupling between magnetization and magnetoelasticity has also been established. The mechanisms of the appearance of magnetoelasticity, including the effect of MAE rearrangement and MAE compression by magnetized particles, have been revealed. It has been found that the magnetoelastic properties of MAE have critical features near TC. The magnetoelastic properties of MAE disappear at T > TC and are restored at T < TC. This makes it possible to use MAE at room temperature as a smart material for devices with self-regulating magnetoelastic properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI