Thin-Slice Pituitary MRI with Deep Learning–based Reconstruction: Diagnostic Performance in a Postoperative Setting

医学 垂体腺瘤 核医学 神经组阅片室 磁共振成像 接收机工作特性 放射科 腺瘤 病理 神经学 内科学 精神科
作者
Minjae Kim,Ho Sung Kim,Hyun Jin Kim,Ji Eun Park,Seo Young Park,Young‐Hoon Kim,Sang Joon Kim,Joonsung Lee,R. Marc Lebel
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (1): 114-122 被引量:72
标识
DOI:10.1148/radiol.2020200723
摘要

Background Achieving high-spatial-resolution pituitary MRI is challenging because of the trade-off between image noise and spatial resolution. Deep learning–based MRI reconstruction enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice MRI. Purpose To assess the diagnostic performance of 1-mm slice thickness MRI with deep learning–based reconstruction (DLR) (hereafter, 1-mm MRI+DLR) compared with 3-mm slice thickness MRI (hereafter, 3-mm MRI) for identifying residual tumor and cavernous sinus invasion in the evaluation of postoperative pituitary adenoma. Materials and Methods This single-institution retrospective study included 65 patients (mean age ± standard deviation, 54 years ± 10; 26 women) who underwent a combined imaging protocol including 3-mm MRI and 1-mm MRI+DLR for postoperative evaluation of pituitary adenoma between August and October 2019. Reference standards for correct diagnosis were established by using all available imaging resources, clinical histories, laboratory findings, surgical records, and pathology reports. The diagnostic performances of 3-mm MRI, 1-mm slice thickness MRI without DLR (hereafter, 1-mm MRI), and 1-mm MRI+DLR for identifying residual tumor and cavernous sinus invasion were evaluated by two readers and compared between the protocols. Results The performance of 1-mm MRI+DLR in the identification of residual tumor was comparable to that of 3-mm MRI (area under the receiver operating characteristic curve [AUC], 0.89–0.92 vs 0.85–0.89, respectively; P ≥ .09). In the identification of cavernous sinus invasion, the diagnostic performance of 1-mm MRI+DLR was higher than that of 3-mm MRI (AUC, 0.95–0.98 vs 0.83–0.87, respectively; P ≤ .02). Conventional 1-mm MRI (AUC, 0.82–0.83) showed comparable diagnostic performance to 3-mm MRI (AUC, 0.83–0.87) (P ≥ .38). With 1-mm MRI+DLR, residual tumor was diagnosed in 20 patients and cavernous sinus invasion was diagnosed in 14 patients, in whom these diagnoses were not made with 3-mm MRI. Conclusion In the postoperative evaluation of pituitary adenoma, 1-mm slice thickness MRI with deep learning–based reconstruction showed higher diagnostic performance than 3-mm slice thickness MRI in the identification of cavernous sinus invasion and comparable diagnostic performance to 3-mm slice thickness MRI in the identification of residual tumor. © RSNA, 2020 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美的碧琴完成签到,获得积分10
1秒前
舒心的水卉完成签到,获得积分10
1秒前
Purplesky完成签到,获得积分10
1秒前
wzy完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
my完成签到,获得积分10
2秒前
liyuxuan完成签到,获得积分10
2秒前
hentai完成签到,获得积分10
2秒前
小许会更好完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
dong应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
英姑应助科研通管家采纳,获得10
5秒前
LJ发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027