Thin-Slice Pituitary MRI with Deep Learning–based Reconstruction: Diagnostic Performance in a Postoperative Setting

医学 垂体腺瘤 核医学 神经组阅片室 磁共振成像 接收机工作特性 放射科 腺瘤 病理 神经学 内科学 精神科
作者
Minjae Kim,Ho Sung Kim,Hyun Jin Kim,Ji Eun Park,Seo Young Park,Young‐Hoon Kim,Sang Joon Kim,Joonsung Lee,R. Marc Lebel
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (1): 114-122 被引量:72
标识
DOI:10.1148/radiol.2020200723
摘要

Background Achieving high-spatial-resolution pituitary MRI is challenging because of the trade-off between image noise and spatial resolution. Deep learning–based MRI reconstruction enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice MRI. Purpose To assess the diagnostic performance of 1-mm slice thickness MRI with deep learning–based reconstruction (DLR) (hereafter, 1-mm MRI+DLR) compared with 3-mm slice thickness MRI (hereafter, 3-mm MRI) for identifying residual tumor and cavernous sinus invasion in the evaluation of postoperative pituitary adenoma. Materials and Methods This single-institution retrospective study included 65 patients (mean age ± standard deviation, 54 years ± 10; 26 women) who underwent a combined imaging protocol including 3-mm MRI and 1-mm MRI+DLR for postoperative evaluation of pituitary adenoma between August and October 2019. Reference standards for correct diagnosis were established by using all available imaging resources, clinical histories, laboratory findings, surgical records, and pathology reports. The diagnostic performances of 3-mm MRI, 1-mm slice thickness MRI without DLR (hereafter, 1-mm MRI), and 1-mm MRI+DLR for identifying residual tumor and cavernous sinus invasion were evaluated by two readers and compared between the protocols. Results The performance of 1-mm MRI+DLR in the identification of residual tumor was comparable to that of 3-mm MRI (area under the receiver operating characteristic curve [AUC], 0.89–0.92 vs 0.85–0.89, respectively; P ≥ .09). In the identification of cavernous sinus invasion, the diagnostic performance of 1-mm MRI+DLR was higher than that of 3-mm MRI (AUC, 0.95–0.98 vs 0.83–0.87, respectively; P ≤ .02). Conventional 1-mm MRI (AUC, 0.82–0.83) showed comparable diagnostic performance to 3-mm MRI (AUC, 0.83–0.87) (P ≥ .38). With 1-mm MRI+DLR, residual tumor was diagnosed in 20 patients and cavernous sinus invasion was diagnosed in 14 patients, in whom these diagnoses were not made with 3-mm MRI. Conclusion In the postoperative evaluation of pituitary adenoma, 1-mm slice thickness MRI with deep learning–based reconstruction showed higher diagnostic performance than 3-mm slice thickness MRI in the identification of cavernous sinus invasion and comparable diagnostic performance to 3-mm slice thickness MRI in the identification of residual tumor. © RSNA, 2020 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助霸气的草莓采纳,获得10
1秒前
1秒前
1秒前
1秒前
Amelie发布了新的文献求助30
2秒前
2秒前
Owen应助默默小鸽子采纳,获得10
2秒前
52Hz完成签到,获得积分10
3秒前
qifeng完成签到,获得积分10
3秒前
4秒前
见贤思齐发布了新的文献求助10
6秒前
青枣不甜发布了新的文献求助10
6秒前
yanxin完成签到,获得积分20
7秒前
Messi发布了新的文献求助10
7秒前
NZH发布了新的文献求助10
8秒前
tianxiong完成签到 ,获得积分10
10秒前
yanxin发布了新的文献求助30
10秒前
12秒前
11完成签到,获得积分10
12秒前
默默小鸽子完成签到,获得积分10
12秒前
13秒前
Summer完成签到,获得积分10
15秒前
15秒前
fancy发布了新的文献求助10
17秒前
活力的如冬完成签到,获得积分10
19秒前
超帅的又槐完成签到,获得积分10
20秒前
喵喵发布了新的文献求助10
20秒前
星辰大海应助青枣不甜采纳,获得10
21秒前
starofjlu关注了科研通微信公众号
23秒前
23秒前
Messi完成签到,获得积分10
23秒前
24秒前
24秒前
Shawn完成签到 ,获得积分10
24秒前
星辰大海应助木木采纳,获得10
25秒前
liusoojoo完成签到,获得积分10
26秒前
26秒前
Quenchingstar完成签到,获得积分10
27秒前
啦啦啦啦啦完成签到,获得积分10
27秒前
伟钧完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148107
求助须知:如何正确求助?哪些是违规求助? 2799178
关于积分的说明 7833767
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628099
版权声明 601655