Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material

拓扑绝缘体 带隙 凝聚态物理 石墨烯 材料科学 拓扑序 基质(水族馆) 原子轨道 量子自旋霍尔效应 散射 量子 量子霍尔效应 光电子学 纳米技术 物理 电子 量子力学 海洋学 光学 地质学
作者
Felix Reis,Gang Li,L. Dudy,Maximilian Bauernfeind,S. Glass,W. Hanke,Ronny Thomale,J. Schäfer,R. Claessen
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:357 (6348): 287-290 被引量:976
标识
DOI:10.1126/science.aai8142
摘要

Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channels at their edges inherently protected against scattering. Initially predicted for graphene, and eventually realized in HgTe quantum wells, in the QSH systems realized so far, the decisive bottleneck preventing applications is the small bulk energy gap of less than 30 meV, requiring cryogenic operation temperatures in order to suppress detrimental bulk contributions to the edge conductance. Room-temperature functionalities, however, require much larger gaps. Here we show how this can be achieved by making use of a new QSH paradigm based on substrate-supported atomic monolayers of a high-Z element. Experimentally, the material is synthesized as honeycomb lattice of bismuth atoms, forming "bismuthene", on top of the wide-gap substrate SiC(0001). Consistent with the theoretical expectations, the spectroscopic signatures in experiment display a huge gap of ~0.8 eV in bismuthene, as well as conductive edge states. The analysis of the layer-substrate orbitals arrives at a QSH phase, whose topological gap - as a hallmark mechanism - is driven directly by the atomic spin-orbit coupling (SOC). Our results demonstrate how strained artificial lattices of heavy atoms, in contact with an insulating substrate, can be utilized to evoke a novel topological wide-gap scenario, where the chemical potential is located well within the global system gap, ensuring pure edge state conductance. We anticipate future experiments on topological signatures, such as transport measurements that probe the QSH effect via quantized universal conductance, notably at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时嗷发布了新的文献求助10
刚刚
xxaqs发布了新的文献求助10
刚刚
小二郎应助nature采纳,获得10
1秒前
小匹夫发布了新的文献求助10
1秒前
汉堡包应助茂利采纳,获得10
1秒前
2秒前
Gandyiii完成签到,获得积分10
2秒前
Swin完成签到,获得积分10
2秒前
李爱国应助邹泰然采纳,获得10
2秒前
生动的大侠完成签到,获得积分10
3秒前
3秒前
充电宝应助温柔发卡采纳,获得10
4秒前
liaolu完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
wcy完成签到,获得积分10
5秒前
5秒前
苹果熊猫完成签到,获得积分10
5秒前
6秒前
7秒前
张惠兰发布了新的文献求助10
7秒前
情怀应助Gandyiii采纳,获得10
7秒前
高兴璎完成签到,获得积分10
7秒前
飞柏发布了新的文献求助30
7秒前
8秒前
trouble虫虫发布了新的文献求助10
8秒前
彭于晏应助Frank采纳,获得10
8秒前
猪猪hero发布了新的文献求助10
8秒前
小夏完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
可爱的函函应助xl采纳,获得10
9秒前
9秒前
充电宝应助wuran采纳,获得10
10秒前
茂利完成签到,获得积分10
11秒前
haorui完成签到,获得积分10
11秒前
生动的保温杯完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302