Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material

拓扑绝缘体 带隙 凝聚态物理 石墨烯 材料科学 拓扑序 基质(水族馆) 原子轨道 量子自旋霍尔效应 散射 量子 量子霍尔效应 光电子学 纳米技术 物理 电子 量子力学 海洋学 光学 地质学
作者
Felix Reis,Gang Li,L. Dudy,Maximilian Bauernfeind,Stefan Glass,W. Hanke,Ronny Thomale,J. Schäfer,R. Claessen
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:357 (6348): 287-290 被引量:848
标识
DOI:10.1126/science.aai8142
摘要

Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channels at their edges inherently protected against scattering. Initially predicted for graphene, and eventually realized in HgTe quantum wells, in the QSH systems realized so far, the decisive bottleneck preventing applications is the small bulk energy gap of less than 30 meV, requiring cryogenic operation temperatures in order to suppress detrimental bulk contributions to the edge conductance. Room-temperature functionalities, however, require much larger gaps. Here we show how this can be achieved by making use of a new QSH paradigm based on substrate-supported atomic monolayers of a high-Z element. Experimentally, the material is synthesized as honeycomb lattice of bismuth atoms, forming "bismuthene", on top of the wide-gap substrate SiC(0001). Consistent with the theoretical expectations, the spectroscopic signatures in experiment display a huge gap of ~0.8 eV in bismuthene, as well as conductive edge states. The analysis of the layer-substrate orbitals arrives at a QSH phase, whose topological gap - as a hallmark mechanism - is driven directly by the atomic spin-orbit coupling (SOC). Our results demonstrate how strained artificial lattices of heavy atoms, in contact with an insulating substrate, can be utilized to evoke a novel topological wide-gap scenario, where the chemical potential is located well within the global system gap, ensuring pure edge state conductance. We anticipate future experiments on topological signatures, such as transport measurements that probe the QSH effect via quantized universal conductance, notably at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
www发布了新的文献求助10
刚刚
1秒前
1秒前
李繁蕊发布了新的文献求助10
2秒前
暴躁的嘉懿完成签到,获得积分10
2秒前
LZH发布了新的文献求助20
2秒前
领导范儿应助rosexu采纳,获得10
3秒前
华生完成签到,获得积分10
4秒前
4秒前
Miracle关注了科研通微信公众号
4秒前
通~发布了新的文献求助10
5秒前
5秒前
Apple完成签到,获得积分10
5秒前
sunzhiyu233发布了新的文献求助10
6秒前
医学僧发布了新的文献求助30
6秒前
Sheila完成签到 ,获得积分10
6秒前
sweetbearm应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
6秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
36456657应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
prosperp应助科研通管家采纳,获得20
7秒前
打打应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
执着夏岚完成签到 ,获得积分10
8秒前
CipherSage应助苏州小北采纳,获得10
8秒前
www完成签到,获得积分20
9秒前
汉关发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808