Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material

拓扑绝缘体 带隙 凝聚态物理 石墨烯 材料科学 拓扑序 基质(水族馆) 原子轨道 量子自旋霍尔效应 散射 量子 量子霍尔效应 光电子学 纳米技术 物理 电子 量子力学 海洋学 光学 地质学
作者
Felix Reis,Gang Li,L. Dudy,Maximilian Bauernfeind,S. Glass,W. Hanke,Ronny Thomale,J. Schäfer,R. Claessen
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:357 (6348): 287-290 被引量:976
标识
DOI:10.1126/science.aai8142
摘要

Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channels at their edges inherently protected against scattering. Initially predicted for graphene, and eventually realized in HgTe quantum wells, in the QSH systems realized so far, the decisive bottleneck preventing applications is the small bulk energy gap of less than 30 meV, requiring cryogenic operation temperatures in order to suppress detrimental bulk contributions to the edge conductance. Room-temperature functionalities, however, require much larger gaps. Here we show how this can be achieved by making use of a new QSH paradigm based on substrate-supported atomic monolayers of a high-Z element. Experimentally, the material is synthesized as honeycomb lattice of bismuth atoms, forming "bismuthene", on top of the wide-gap substrate SiC(0001). Consistent with the theoretical expectations, the spectroscopic signatures in experiment display a huge gap of ~0.8 eV in bismuthene, as well as conductive edge states. The analysis of the layer-substrate orbitals arrives at a QSH phase, whose topological gap - as a hallmark mechanism - is driven directly by the atomic spin-orbit coupling (SOC). Our results demonstrate how strained artificial lattices of heavy atoms, in contact with an insulating substrate, can be utilized to evoke a novel topological wide-gap scenario, where the chemical potential is located well within the global system gap, ensuring pure edge state conductance. We anticipate future experiments on topological signatures, such as transport measurements that probe the QSH effect via quantized universal conductance, notably at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
昏睡的千凝完成签到,获得积分20
2秒前
玖熙发布了新的文献求助50
2秒前
2秒前
哒哒哒发布了新的文献求助10
2秒前
kkkjjj完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
英姑应助第九个黑夜采纳,获得10
4秒前
袁奇点完成签到,获得积分10
5秒前
qdsj2033发布了新的文献求助10
5秒前
科研通AI6应助执着的凌香采纳,获得10
5秒前
诚心一兰发布了新的文献求助10
6秒前
kkkjjj发布了新的文献求助10
7秒前
汉堡包应助lory采纳,获得10
7秒前
kiminonawa应助务实青筠采纳,获得10
7秒前
陈词丶发布了新的文献求助10
8秒前
10秒前
哒哒哒完成签到,获得积分10
10秒前
11秒前
11秒前
川农辅导员完成签到,获得积分10
11秒前
NexusExplorer应助自然自行车采纳,获得10
13秒前
DDD应助诚心一兰采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
CipherSage应助明芬采纳,获得10
15秒前
钟迪完成签到,获得积分10
15秒前
牛牛发布了新的文献求助10
17秒前
18秒前
苦尽甘来完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
兴奋烨华完成签到 ,获得积分10
24秒前
24秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800