Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material

拓扑绝缘体 带隙 凝聚态物理 石墨烯 材料科学 拓扑序 基质(水族馆) 原子轨道 量子自旋霍尔效应 散射 量子 量子霍尔效应 光电子学 纳米技术 物理 电子 量子力学 海洋学 光学 地质学
作者
Felix Reis,Gang Li,L. Dudy,Maximilian Bauernfeind,S. Glass,W. Hanke,Ronny Thomale,J. Schäfer,R. Claessen
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:357 (6348): 287-290 被引量:976
标识
DOI:10.1126/science.aai8142
摘要

Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channels at their edges inherently protected against scattering. Initially predicted for graphene, and eventually realized in HgTe quantum wells, in the QSH systems realized so far, the decisive bottleneck preventing applications is the small bulk energy gap of less than 30 meV, requiring cryogenic operation temperatures in order to suppress detrimental bulk contributions to the edge conductance. Room-temperature functionalities, however, require much larger gaps. Here we show how this can be achieved by making use of a new QSH paradigm based on substrate-supported atomic monolayers of a high-Z element. Experimentally, the material is synthesized as honeycomb lattice of bismuth atoms, forming "bismuthene", on top of the wide-gap substrate SiC(0001). Consistent with the theoretical expectations, the spectroscopic signatures in experiment display a huge gap of ~0.8 eV in bismuthene, as well as conductive edge states. The analysis of the layer-substrate orbitals arrives at a QSH phase, whose topological gap - as a hallmark mechanism - is driven directly by the atomic spin-orbit coupling (SOC). Our results demonstrate how strained artificial lattices of heavy atoms, in contact with an insulating substrate, can be utilized to evoke a novel topological wide-gap scenario, where the chemical potential is located well within the global system gap, ensuring pure edge state conductance. We anticipate future experiments on topological signatures, such as transport measurements that probe the QSH effect via quantized universal conductance, notably at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YOLO完成签到,获得积分20
1秒前
一心难求发布了新的文献求助10
1秒前
领导范儿应助小耗子采纳,获得10
1秒前
2秒前
Nick爱学习发布了新的文献求助10
2秒前
Darline发布了新的文献求助10
2秒前
3秒前
科研通AI6应助甄樱采纳,获得10
3秒前
林仰完成签到,获得积分10
3秒前
天狮星上的人完成签到,获得积分10
4秒前
Akim应助哑巴采纳,获得10
4秒前
玮玮发布了新的文献求助10
4秒前
4秒前
4秒前
ding应助萍萍采纳,获得10
4秒前
Yeeellow完成签到 ,获得积分10
5秒前
duoduo发布了新的文献求助10
5秒前
十年完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
鳗鱼白竹完成签到,获得积分10
8秒前
酷炫的归尘完成签到,获得积分10
8秒前
Jayden完成签到,获得积分10
9秒前
科研狗完成签到 ,获得积分10
9秒前
黄家宝发布了新的文献求助10
11秒前
勤奋的书竹完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
11秒前
luoy完成签到 ,获得积分10
11秒前
yiyiyi完成签到 ,获得积分10
11秒前
wanci应助简单捕手采纳,获得10
11秒前
12秒前
无极微光应助Yeeellow采纳,获得20
12秒前
打打应助专注寻菱采纳,获得10
13秒前
13秒前
yuanke666发布了新的文献求助10
13秒前
纪震宇发布了新的文献求助10
14秒前
Akim应助Livrik采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481374
求助须知:如何正确求助?哪些是违规求助? 4582396
关于积分的说明 14384959
捐赠科研通 4511107
什么是DOI,文献DOI怎么找? 2472177
邀请新用户注册赠送积分活动 1458525
关于科研通互助平台的介绍 1432064