Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material

拓扑绝缘体 带隙 凝聚态物理 石墨烯 材料科学 拓扑序 基质(水族馆) 原子轨道 量子自旋霍尔效应 散射 量子 量子霍尔效应 光电子学 纳米技术 物理 电子 量子力学 海洋学 光学 地质学
作者
Felix Reis,Gang Li,L. Dudy,Maximilian Bauernfeind,Stefan Glass,W. Hanke,Ronny Thomale,J. Schäfer,R. Claessen
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:357 (6348): 287-290 被引量:848
标识
DOI:10.1126/science.aai8142
摘要

Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channels at their edges inherently protected against scattering. Initially predicted for graphene, and eventually realized in HgTe quantum wells, in the QSH systems realized so far, the decisive bottleneck preventing applications is the small bulk energy gap of less than 30 meV, requiring cryogenic operation temperatures in order to suppress detrimental bulk contributions to the edge conductance. Room-temperature functionalities, however, require much larger gaps. Here we show how this can be achieved by making use of a new QSH paradigm based on substrate-supported atomic monolayers of a high-Z element. Experimentally, the material is synthesized as honeycomb lattice of bismuth atoms, forming "bismuthene", on top of the wide-gap substrate SiC(0001). Consistent with the theoretical expectations, the spectroscopic signatures in experiment display a huge gap of ~0.8 eV in bismuthene, as well as conductive edge states. The analysis of the layer-substrate orbitals arrives at a QSH phase, whose topological gap - as a hallmark mechanism - is driven directly by the atomic spin-orbit coupling (SOC). Our results demonstrate how strained artificial lattices of heavy atoms, in contact with an insulating substrate, can be utilized to evoke a novel topological wide-gap scenario, where the chemical potential is located well within the global system gap, ensuring pure edge state conductance. We anticipate future experiments on topological signatures, such as transport measurements that probe the QSH effect via quantized universal conductance, notably at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助勤劳的皮皮虾采纳,获得10
1秒前
1秒前
风汐5423完成签到,获得积分10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
rxgg完成签到,获得积分10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
huhuhu完成签到,获得积分10
4秒前
斯文败类应助科研通管家采纳,获得30
4秒前
CWNU_HAN应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
Orange应助任梓宁采纳,获得10
5秒前
善学以致用应助Tracy麦子采纳,获得10
6秒前
6秒前
huhuhu发布了新的文献求助10
6秒前
doxiao发布了新的文献求助10
8秒前
ixueyi发布了新的文献求助10
9秒前
水1111发布了新的文献求助10
10秒前
小丽酱发布了新的文献求助10
10秒前
Hty1764完成签到,获得积分10
10秒前
能干的棉花糖完成签到,获得积分10
11秒前
12秒前
12秒前
Evan应助费费Queen采纳,获得10
17秒前
任梓宁发布了新的文献求助10
17秒前
Gan完成签到,获得积分10
17秒前
研友_VZG7GZ应助yrt采纳,获得10
17秒前
17秒前
十月发布了新的文献求助10
18秒前
华仔应助旋转木马9个采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153568
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861428
捐赠科研通 2462728
什么是DOI,文献DOI怎么找? 1310940
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809