Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material

拓扑绝缘体 带隙 凝聚态物理 石墨烯 材料科学 拓扑序 基质(水族馆) 原子轨道 量子自旋霍尔效应 散射 量子 量子霍尔效应 光电子学 纳米技术 物理 电子 量子力学 海洋学 光学 地质学
作者
Felix Reis,Gang Li,L. Dudy,Maximilian Bauernfeind,S. Glass,W. Hanke,Ronny Thomale,J. Schäfer,R. Claessen
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:357 (6348): 287-290 被引量:967
标识
DOI:10.1126/science.aai8142
摘要

Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channels at their edges inherently protected against scattering. Initially predicted for graphene, and eventually realized in HgTe quantum wells, in the QSH systems realized so far, the decisive bottleneck preventing applications is the small bulk energy gap of less than 30 meV, requiring cryogenic operation temperatures in order to suppress detrimental bulk contributions to the edge conductance. Room-temperature functionalities, however, require much larger gaps. Here we show how this can be achieved by making use of a new QSH paradigm based on substrate-supported atomic monolayers of a high-Z element. Experimentally, the material is synthesized as honeycomb lattice of bismuth atoms, forming "bismuthene", on top of the wide-gap substrate SiC(0001). Consistent with the theoretical expectations, the spectroscopic signatures in experiment display a huge gap of ~0.8 eV in bismuthene, as well as conductive edge states. The analysis of the layer-substrate orbitals arrives at a QSH phase, whose topological gap - as a hallmark mechanism - is driven directly by the atomic spin-orbit coupling (SOC). Our results demonstrate how strained artificial lattices of heavy atoms, in contact with an insulating substrate, can be utilized to evoke a novel topological wide-gap scenario, where the chemical potential is located well within the global system gap, ensuring pure edge state conductance. We anticipate future experiments on topological signatures, such as transport measurements that probe the QSH effect via quantized universal conductance, notably at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丨断掉的签字笔完成签到,获得积分10
1秒前
机灵柚子应助清修采纳,获得10
1秒前
勤恳的糖豆完成签到,获得积分10
2秒前
2秒前
mmm发布了新的社区帖子
2秒前
2秒前
3秒前
3秒前
3秒前
讲故事的小虾米完成签到,获得积分10
4秒前
4秒前
aboutapilot关注了科研通微信公众号
4秒前
geraltgg完成签到,获得积分10
4秒前
重重发布了新的文献求助10
5秒前
HHH完成签到,获得积分10
5秒前
5秒前
搜集达人应助nczpf2010采纳,获得10
5秒前
6秒前
lily完成签到,获得积分10
7秒前
耶路生完成签到,获得积分10
7秒前
8秒前
朴实寻琴发布了新的文献求助10
8秒前
体贴水风完成签到,获得积分10
8秒前
郭郭郭发布了新的文献求助10
9秒前
9秒前
9秒前
香蕉觅云应助Hhd采纳,获得10
9秒前
LLLL发布了新的文献求助10
10秒前
大香香发布了新的文献求助10
10秒前
geraltgg发布了新的文献求助10
10秒前
10秒前
11秒前
王小花完成签到,获得积分10
11秒前
思源应助Edgar采纳,获得30
12秒前
12秒前
Super发布了新的文献求助30
12秒前
热可可728完成签到,获得积分10
13秒前
霜打了的葡萄完成签到,获得积分10
13秒前
研友_VZG7GZ应助细心妙菡采纳,获得10
13秒前
一鹭向北发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755902
求助须知:如何正确求助?哪些是违规求助? 3299200
关于积分的说明 10109040
捐赠科研通 3013805
什么是DOI,文献DOI怎么找? 1655255
邀请新用户注册赠送积分活动 789678
科研通“疑难数据库(出版商)”最低求助积分说明 753361