渗滤液
废物管理
化学
过硫酸盐
环境科学
生物反応器型埋立
试剂
环境工程
工程类
催化作用
物理化学
生物化学
作者
Chuanwei Wu,Weiming Chen,Zhepei Gu,Qibin Li
标识
DOI:10.1016/j.scitotenv.2020.143131
摘要
Abstract The development and application of Fenton and ozonation systems in landfill leachate treatment over the last 20 years, and the current research status are reviewed in this paper, with an emphasis on the technical and economic characteristics of Fenton and ozonation systems used to treat different types of landfill leachate. To date, a total of 101 and 78 articles have been published regarding leachate treatment by Fenton and ozonation systems, respectively. These articles considered the use of two systems to treat aged leachate, biologically treated leachate and leachate comprising the concentrated solution resulting from reverse osmosis (RO). The oxidization mechanisms of the two systems used to treat landfill leachate significantly differed in terms of their optimal process parameters (e.g., initial pH value, reagent dosage, and reaction time) and removal efficiency. The Fenton and ozonation systems outperformed persulfate-based advanced oxidation technology in terms of their improved biodegradability of landfill leachate and engineering practicability. The cost of the reagents required to treat landfill leachate by Fenton and ozonation systems accounted for at least 85% of the total operating cost. In contrast to the ozonation system, the Fenton system was more cost-effective when both systems were used to treat the same type of landfill leachate. This study provides a theoretical basis for the operation of Fenton and ozonation systems and also offers technical support for landfill leachate disposal companies that opt to use these technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI