代谢组学
胰腺癌
生物标志物
代谢物
癌症
医学
生物标志物发现
转移
代谢组
内科学
癌症研究
生物信息学
肿瘤科
生物
蛋白质组学
生物化学
基因
作者
Xialin Luo,Jingjing Liu,Huaizhi Wang,Haitao Lu
标识
DOI:10.1016/j.phrs.2020.104805
摘要
Pancreatic cancer (PC) is one of the most aggressive malignancies with high mortality due to a complex and latent pathogenesis leading to the severe lack of early diagnosis methods. To improve clinical diagnosis and enhance therapeutic outcome, we employed the newly developed precision-targeted metabolomics method to identify and validate metabolite biomarkers from the plasma samples of patients with pancreatic cancer that can sensitively and efficiently diagnose the onsite progression of the disease. Many differential metabolites have the capacity to markedly distinguish patients with pancreatic cancer (n = 60) from healthy controls (n = 60). To further enhance the specificity and selectivity of metabolite biomarkers, a dozen tumor tissues from PC patients and paired normal tissues were used to clinically validate the biomarker performance. We eventually verified five new metabolite biomarkers in plasma (creatine, inosine, beta-sitosterol, sphinganine and glycocholic acid), which can be used to readily diagnose pancreatic cancer in a clinical setting. Excitingly, we proposed a panel biomarker by integrating these five individual metabolites into one pattern, demonstrating much higher accuracy and specificity to precisely diagnose pancreatic cancer than conventional biomarkers (CA125, CA19-9, CA242 and CEA); moreover, this plasma panel biomarker used for PC diagnosis is also quite convenient to implement in clinical practice. Using the same metabolomics method, we characterized succinic acid and gluconic acid as having a great capability to monitor the progression and metastasis of pancreatic cancer at different stages. Taken together, this metabolomics method was used to identify and validate metabolite biomarkers that can precisely and sensitively diagnose the onsite progression and metastasis of pancreatic cancer in a clinical setting. Furthermore, such effort should leave clinicians with the correct time frame to facilitate early and efficient therapeutic interventions, which could largely improve the five-year survival rate of PC patients by significantly lowering clinical mortality.
科研通智能强力驱动
Strongly Powered by AbleSci AI