聚类分析
计算机科学
人工智能
模式识别(心理学)
化学空间
人工神经网络
相似性(几何)
数据挖掘
化学
生物化学
药物发现
图像(数学)
作者
Philippe Schwaller,Daniel Probst,Alain C. Vaucher,Vishnu H Nair,Teodoro Laino,Jean‐Louis Reymond
标识
DOI:10.26434/chemrxiv.9897365.v2
摘要
Organic reactions are usually assigned to classes grouping reactions with similar reagents and mechanisms. The classification process is a tedious task, requiring first an accurate mapping of the reaction (atom mapping) followed by the identification of the corresponding reaction class template. In this work, we present two transformer-based models that infer reaction classes from the SMILES representation of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We study the incorrect predictions of the models and show that they reveal different biases and mistakes in the underlying data set. Using the embeddings of our classification model, we introduce reaction fingerprints that do not require knowing the reaction center or distinguishing between reactants and reagents. This conversion from chemical reactions to feature vectors enables efficient clustering and similarity search in the reaction space. We compare the reaction clustering for combinations of self-supervised, supervised, and molecular shingle-based reaction representations.
科研通智能强力驱动
Strongly Powered by AbleSci AI