Molten salt “boiling” synthesis of surface decorated bimetallic-nitrogen doped carbon hollow nanospheres: An oxygen reduction catalyst with dense active sites and high stability

催化作用 氧化剂 双金属片 材料科学 化学工程 双金属 熔盐 碳纤维 无机化学 氧气 吸附 氮气 化学 有机化学 复合数 复合材料 工程类
作者
Shi-Jie Yang,Xiaoyi Xue,Jiajia Zhang,Xinhe Liu,Chenchen Dai,Qian Xu,Jiabiao Lian,Yan Zhao,Guochun Li,Huaming Li,Shouqi Yuan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:395: 125064-125064 被引量:27
标识
DOI:10.1016/j.cej.2020.125064
摘要

Previous studies have shown that introducing of an extra transition metal into the monometallic-nitrogen doped carbon (mono-MNC) could benefit oxygen adsorption, further weaken the O-O bond energy, and thus promote the electrocatalytic performance for oxygen reduction reaction (ORR). Up to now, the bimetallic-nitrogen doped carbons (bi-MNC) were mostly prepared by direct pyrolysis of in-situ mixed precursors or pre-formed bimetal-organic frameworks (bi-MOFs), sub-micro sized products with encapsulated metal particles were commonly formed, leading to lower utilization of the metal atoms and less active sites density of the catalysts. In this paper, surface anchored iron-cobalt-nitrogen doped carbon (FeCoNC) hollow nanospheres were properly designed by “boiling” the monodispersed polypyrrole nanospheres in Fe, Co ions involved molten salt. Even a trace amount of Fe, Co atoms were anchored on the nitrogen doped carbon hollow nanospheres, the onset potential, half-wave potential and limiting current density could reach to 0.950 V, 0.841 V and 6.898 mA/cm2 respectively at low mass loading of 0.2 mg/cm2, demonstrating high utilization of the metal atoms and dense active sites of the catalyst. The Zn-air battery and direct ethanol fuel cell tests also revealed that the FeCoNC hollow nanospheres could present high stability in both non-oxidizing and oxidizing alkaline conditions. The surface decoration of bimetallic atoms on nitrogen doped carbon nanospheres through molten salt “boiling” method provides an effective way to prepare superior electrocatalysts for ORR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助笑傲采纳,获得10
刚刚
义气绿柳发布了新的文献求助10
1秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
oceanao应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
CipherSage应助优雅的迎彤采纳,获得10
7秒前
wrx完成签到,获得积分10
11秒前
13秒前
13秒前
义气绿柳完成签到,获得积分10
14秒前
脑洞疼应助wrx采纳,获得10
14秒前
超级不言完成签到,获得积分10
15秒前
陈可霖发布了新的文献求助10
16秒前
减肥为窈窕完成签到,获得积分10
18秒前
18秒前
俊熙C发布了新的文献求助10
20秒前
21秒前
qazx完成签到,获得积分10
23秒前
24秒前
YBW发布了新的文献求助10
24秒前
Jasper应助俊熙C采纳,获得10
24秒前
笑傲发布了新的文献求助10
28秒前
28秒前
喵喵发文章啦完成签到,获得积分20
30秒前
35秒前
36秒前
李健的小迷弟应助综述王采纳,获得10
39秒前
knowledge159发布了新的文献求助10
40秒前
彭于彦祖应助what采纳,获得20
40秒前
赫连涵柏完成签到,获得积分10
41秒前
阿治发布了新的文献求助10
41秒前
脑洞疼应助笑傲采纳,获得10
43秒前
马俣辰完成签到,获得积分10
45秒前
溜了溜了发布了新的文献求助20
45秒前
领导范儿应助优雅的听兰采纳,获得10
46秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228