非阻塞I/O
异质结
材料科学
电化学
复合材料
光电子学
电极
化学
物理化学
催化作用
生物化学
作者
Zexian Zhang,Tao Mei,Kai Yang,Jing Li,Zhi Tao,Yüting Xiong,Liangbiao Wang
出处
期刊:Dalton Transactions
[The Royal Society of Chemistry]
日期:2020-01-01
卷期号:49 (41): 14483-14489
被引量:15
摘要
The conductivity and stability of materials have always been the main problems hindering the development of lithium-ion battery applications. Here, we successfully construct MnCO3@NiO composites with unique heterogeneous structure via the epitaxial growth of porous NiO nanosheets (thickness: ∼125 nm) on MnCO3 microspheres (diameter: ∼3 μm) to be the anode of lithium-ion batteries. The synergistic effect provided by this special heterogeneous structure effectively improves the electrochemical kinetics, specific surface area as well as structural stability of the composites, finally resulting in predictable enhanced comprehensive electrochemical performance. The electrochemical results show that the MnCO3@NiO composites exhibit a reversible discharge capacity of 624 mA h g-1 at a current density of 1.0 A g-1 up to 300 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI