Learning Hybrid Representations for Automatic 3D Vessel Centerline Extraction

计算机科学 点云 人工智能 卷积神经网络 点(几何) 计算机视觉 不连续性分类 推论 代表(政治) 模式识别(心理学) 图像(数学) 分割 数学 数学分析 几何学 政治 政治学 法学
作者
Jiafa He,Chengwei Pan,Can Yang,Ming Zhang,Yang Wang,Xiaowei Zhou,Yizhou Yu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 24-34 被引量:23
标识
DOI:10.1007/978-3-030-59725-2_3
摘要

Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses. Existing methods based on convolutional neural networks (CNNs) may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images. We argue that preserving the continuity of extracted vessels requires to take into account the global geometry. However, 3D convolutions are computationally inefficient, which prohibits the 3D CNNs from sufficiently large receptive fields to capture the global cues in the entire image. In this work, we propose a hybrid representation learning approach to address this challenge. The main idea is to use CNNs to learn local appearances of vessels in image crops while using another point-cloud network to learn the global geometry of vessels in the entire image. In inference, the proposed approach extracts local segments of vessels using CNNs, classifies each segment based on global geometry using the point-cloud network, and finally connects all the segments that belong to the same vessel using the shortest-path algorithm. This combination results in an efficient, fully-automatic and template-free approach to centerline extraction from 3D images. We validate the proposed approach on CTA datasets and demonstrate its superior performance compared to both traditional and CNN-based baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助积极的老鼠采纳,获得10
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
田様应助鲜艳的三毒采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
8R60d8应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
氵灬发布了新的文献求助10
2秒前
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879