Learning Hybrid Representations for Automatic 3D Vessel Centerline Extraction

计算机科学 点云 人工智能 卷积神经网络 点(几何) 计算机视觉 不连续性分类 推论 代表(政治) 模式识别(心理学) 图像(数学) 分割 数学 政治 数学分析 法学 政治学 几何学
作者
Jiafa He,Chengwei Pan,Can Yang,Ming Zhang,Yang Wang,Xiaowei Zhou,Yizhou Yu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 24-34 被引量:23
标识
DOI:10.1007/978-3-030-59725-2_3
摘要

Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses. Existing methods based on convolutional neural networks (CNNs) may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images. We argue that preserving the continuity of extracted vessels requires to take into account the global geometry. However, 3D convolutions are computationally inefficient, which prohibits the 3D CNNs from sufficiently large receptive fields to capture the global cues in the entire image. In this work, we propose a hybrid representation learning approach to address this challenge. The main idea is to use CNNs to learn local appearances of vessels in image crops while using another point-cloud network to learn the global geometry of vessels in the entire image. In inference, the proposed approach extracts local segments of vessels using CNNs, classifies each segment based on global geometry using the point-cloud network, and finally connects all the segments that belong to the same vessel using the shortest-path algorithm. This combination results in an efficient, fully-automatic and template-free approach to centerline extraction from 3D images. We validate the proposed approach on CTA datasets and demonstrate its superior performance compared to both traditional and CNN-based baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Suniex完成签到,获得积分10
1秒前
析木发布了新的文献求助10
1秒前
2秒前
heady完成签到,获得积分10
2秒前
士载完成签到,获得积分10
2秒前
2秒前
针地很不戳完成签到,获得积分10
2秒前
lcj完成签到,获得积分10
3秒前
HCN完成签到,获得积分10
3秒前
3秒前
ecole关注了科研通微信公众号
4秒前
顺其自然_666888完成签到,获得积分10
4秒前
4秒前
goo发布了新的文献求助10
4秒前
5秒前
小崔完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
maction应助文艺的冬卉采纳,获得10
5秒前
5秒前
Jacky发布了新的文献求助10
6秒前
唐老丫完成签到,获得积分10
6秒前
李健应助邢哥哥采纳,获得10
6秒前
Charety完成签到,获得积分10
7秒前
黄晃晃发布了新的文献求助10
7秒前
Jmax发布了新的文献求助10
7秒前
神勇初瑶完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
嗯哼完成签到,获得积分10
8秒前
ccc完成签到 ,获得积分10
8秒前
强小强完成签到,获得积分10
8秒前
jzk2025发布了新的文献求助10
8秒前
sunrise_99完成签到,获得积分10
9秒前
莫莫莫莫-范完成签到,获得积分10
9秒前
10秒前
hhh发布了新的文献求助10
10秒前
豆豆完成签到,获得积分20
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599730
求助须知:如何正确求助?哪些是违规求助? 4010192
关于积分的说明 12415278
捐赠科研通 3689855
什么是DOI,文献DOI怎么找? 2034068
邀请新用户注册赠送积分活动 1067344
科研通“疑难数据库(出版商)”最低求助积分说明 952301