Adaptive AI-based auto-scaling for Kubernetes

供应 云计算 计算机科学 缩放比例 集合(抽象数据类型) Web服务 容器(类型理论) 基线(sea) 服务质量 服务提供商 资源(消歧) 分布式计算 服务(商务) 计算机网络 万维网 操作系统 工程类 经济 经济 地质学 海洋学 程序设计语言 机械工程 数学 几何学
作者
László Toka,Gergely Dobreff,Balázs Fodor,Balázs Sonkoly
标识
DOI:10.1109/ccgrid49817.2020.00-33
摘要

Kubernetes, the prevalent container orchestrator for cloud-deployed web applications, offers an automatic scaling feature for the application provider in order to meet the ever-changing amount of demand from its clients. This auto-scaling service, however, requires a seemingly difficult parameter set to be customized by the application provider, and those management parameters are static while incoming web request dynamics often change, not to mention the fact that scaling decisions are inherently reactive, instead of being proactive. Therefore we set the ultimate goal of making cloud-based web applications' management easier and more effective. We propose a Kubernetes scaling engine that makes the auto-scaling decisions apt for handling the actual variability of incoming requests. In this engine various AI-based forecast methods compete with each other via a short-term evaluation loop in order to always give the lead to the method that suits best the actual request dynamics, as soon as possible. We also introduce a compact management parameter for the cloud-tenant application provider in order to easily set their sweet spot in the resource over-provisioning vs. SLA violation trade-off. The multi-forecast scaling engine and the proposed management parameter are evaluated both in simulations and with measurements on our collected web traces to show the improved quality of fitting provisioned resources to service demand. We find that with just a few competing forecast methods, our auto-scaling engine, implemented in Kubernetes, results in significantly less lost requests with slightly more provisioned resources compared to the default baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助欧阳月空采纳,获得10
3秒前
3秒前
ElvisWu完成签到,获得积分10
4秒前
4秒前
6秒前
moji发布了新的文献求助10
7秒前
Imp完成签到,获得积分10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
33发布了新的文献求助30
11秒前
彦卿完成签到 ,获得积分10
12秒前
思源应助赵清持采纳,获得10
13秒前
张雯思发布了新的文献求助10
14秒前
Orange应助Shrine采纳,获得10
15秒前
16秒前
卡卡罗特发布了新的文献求助10
16秒前
cdytjt完成签到,获得积分10
18秒前
21秒前
ding应助小田心采纳,获得10
21秒前
21秒前
21秒前
22秒前
22秒前
wwl发布了新的文献求助10
23秒前
鹏程万里完成签到,获得积分10
24秒前
星辰大海应助li采纳,获得10
25秒前
chasikan发布了新的文献求助30
26秒前
cxy发布了新的文献求助10
27秒前
幸福大白发布了新的文献求助10
28秒前
大个应助贾克斯采纳,获得10
30秒前
过时的画板完成签到,获得积分10
30秒前
大气小蘑菇完成签到,获得积分10
33秒前
34秒前
小田心发布了新的文献求助10
40秒前
千跃举报求助违规成功
40秒前
whatever举报求助违规成功
40秒前
wdy111举报求助违规成功
40秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174