亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Acute Kidney Injury Prediction Model Based on Ensemble Learning Algorithm

计算机科学 机器学习 Boosting(机器学习) 集合预报 人工智能 急性肾损伤 集成学习 初始化 重症监护室 预测建模 时间序列 支持向量机 算法 数据挖掘 医学 重症监护医学 内科学 程序设计语言
作者
Yuan Wang,Yake Wei,Qin Wu,Hao Yang,Jingwei Li
标识
DOI:10.1109/itme.2019.00015
摘要

Acute Kidney Injury (AKI), a common disease in Intensive Care Unit (ICU) patients, is related to high cost, morbidity and mortality. The early prediction of AKI is critical for improving patients' outcome. However, sparse clinical data and highly imbalanced dataset bring great challenges to AKI prediction. Among existed machine learning algorithms, ensemble learning often stands out with its good performance on complex classification problems. Boosting algorithm is one of the best ensemble learning algorithms. Therefore, we develop a prediction model based on it aiming to forecast AKI ahead 24 hours and 48 hours. We also adopt the way that is analogous to text modeling transforming heterogeneous time series reflecting patients' medication information into multidimensional vector to overcome problem brought by sparse data. Additionally, since the imbalanced dataset would affect predictive performance, we artificially construct a more balanced dataset based on the original dataset to initialize the model. According to the experimental results, our model works well on the ICU patients dataset (AUC 24h ahead: 0.80 48h ahead 0.77). We also verify that medication information improves model performance (24h ahead: AUC 0.75 to 0.80 48h ahead: AUC 0.75 to 0.77) and find the optimal ratio of number between classes when initializing model for AKI prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liuxiaoliu完成签到 ,获得积分10
4秒前
7秒前
13秒前
swan完成签到 ,获得积分10
13秒前
xuyan发布了新的文献求助30
14秒前
17秒前
18秒前
五博发布了新的文献求助10
18秒前
kk完成签到,获得积分10
20秒前
TangSEU发布了新的文献求助10
21秒前
xiaohan,JIA完成签到,获得积分10
23秒前
苗龙伟完成签到 ,获得积分10
26秒前
27秒前
27秒前
28秒前
爆米花应助TangSEU采纳,获得10
30秒前
chen发布了新的文献求助10
31秒前
31秒前
liruixin发布了新的文献求助10
32秒前
氯雷他定发布了新的文献求助10
34秒前
40秒前
氯雷他定完成签到,获得积分10
41秒前
43秒前
47秒前
HL773发布了新的文献求助10
50秒前
Hello应助沐阳采纳,获得10
50秒前
C_Cppp完成签到 ,获得积分10
52秒前
沐阳完成签到,获得积分10
57秒前
伊力扎提发布了新的文献求助10
58秒前
mmyhn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
就123发布了新的文献求助10
1分钟前
英俊的铭应助豆豆眼采纳,获得10
1分钟前
llll完成签到,获得积分10
1分钟前
sss完成签到,获得积分10
1分钟前
1分钟前
852应助llll采纳,获得10
1分钟前
不霉发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723397
求助须知:如何正确求助?哪些是违规求助? 5276618
关于积分的说明 15298565
捐赠科研通 4871890
什么是DOI,文献DOI怎么找? 2616321
邀请新用户注册赠送积分活动 1566167
关于科研通互助平台的介绍 1523041