过电位
纳米片
材料科学
法拉第效率
电化学
反键分子轨道
费米能级
化学物理
电极
纳米技术
原子轨道
化学
电子
物理化学
量子力学
物理
作者
Mengya Zhao,Yaliu Gu,Weicheng Gao,Peixin Cui,Huang Tang,Xinying Wei,Heng Zhu,Guoqiang Li,Shicheng Yan,Xiuyun Zhang,Zhigang Zou
标识
DOI:10.1016/j.apcatb.2020.118625
摘要
The overpotential and selectivity of electrochemical CO2 reduction over metal electrodes are closely related to the adsorption strength of key intermediate. Defect engineering of the materials can modulate the energetic difference between the antibonding states and the Fermi level, thus strengthening the surface-adsorbate chemical bonds and boosting the steady progress of the electrochemical reaction. Here, we proposed an efficient strategy to electrochemically reduced layered Bi2O2CO3 to Bi nanosheet with (001) dominant facet and atom vacancies. The Bi nanosheet exhibits 90 % CO2-to-formate Faradaic efficiency at a low overpotential of 420 mV and excellent stability over 100 h in 0.1 M KHCO3 electrolyte. Spectroscopic and computational studies confirm that the Bi atom vacancies induced the electron-rich surface, leading the movement of p states towards the Fermi level, hence decreasing the activation energy of CO2 to CO2−* radical and promoting the stability of OCHO* intermediate via p orbitals hybridization between the O in carbon-containing intermediates and the Bi electrode.
科研通智能强力驱动
Strongly Powered by AbleSci AI