亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep residual compensation extreme learning machine and applications

极限学习机 残余物 计算机科学 人工智能 人工神经网络 机器学习 反向传播 前馈神经网络 初始化 支持向量机 算法 在线机器学习 图层(电子) 材料科学 复合材料 程序设计语言
作者
Yinghao Chen,Xiao‐Liang Xie,Tianle Zhang,Jiaxian Bai,Muzhou Hou
出处
期刊:Journal of Forecasting [Wiley]
卷期号:39 (6): 986-999 被引量:29
标识
DOI:10.1002/for.2663
摘要

Abstract The extreme learning machine (ELM) is a type of machine learning algorithm for training a single hidden layer feedforward neural network. Randomly initializing the weight between the input layer and the hidden layer and the threshold of each hidden layer neuron, the weight matrix of the hidden layer can be calculated by the least squares method. The efficient learning ability in ELM makes it widely applicable in classification, regression, and more. However, owing to some unutilized information in the residual, there are relatively huge prediction errors involving ELM. In this paper, a deep residual compensation extreme learning machine model (DRC‐ELM) of multilayer structures applied to regression is presented. The first layer is the basic ELM layer, which helps in obtaining an approximation of the objective function by learning the characteristics of the sample. The other layers are the residual compensation layers in which the learned residual is corrected layer by layer to the predicted value obtained in the previous layer by constructing a feature mapping between the input layer and the output of the upper layer. This model is applied to two practical problems: gold price forecasting and airfoil self‐noise prediction. We used the DRC‐ELM with 50, 100, and 200 residual compensation layers respectively for experiments, which show that DRC‐ELM does better in generalization and robustness than classical ELM, improved ELM models such as GA‐RELM and OS‐ELM, and other traditional machine learning algorithms such as support vector machine (SVM) and back‐propagation neural network (BPNN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李玉玲完成签到 ,获得积分10
1秒前
1秒前
5秒前
qc发布了新的文献求助10
11秒前
15秒前
18秒前
白山发布了新的文献求助10
19秒前
任性学姐发布了新的文献求助10
24秒前
李爱国应助qc采纳,获得10
28秒前
白山完成签到,获得积分10
30秒前
大渣饼完成签到 ,获得积分10
36秒前
今后应助任性学姐采纳,获得10
36秒前
小蘑菇应助读书的时候采纳,获得30
38秒前
qc完成签到,获得积分20
39秒前
44秒前
柠栀完成签到 ,获得积分10
45秒前
养虎人发布了新的文献求助10
51秒前
温柔锦程发布了新的文献求助10
52秒前
毛毛完成签到,获得积分10
1分钟前
闪闪的晓丝完成签到 ,获得积分10
1分钟前
1分钟前
魔幻的芳完成签到,获得积分10
1分钟前
火星上的宝马完成签到,获得积分10
1分钟前
orixero应助Guozixin采纳,获得10
1分钟前
悲凉的忆南完成签到,获得积分10
1分钟前
陈旧完成签到,获得积分10
1分钟前
欣欣子完成签到,获得积分10
1分钟前
sunstar完成签到,获得积分10
1分钟前
yxl完成签到,获得积分10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
FashionBoy应助温柔锦程采纳,获得10
1分钟前
bnbn应助xzccc采纳,获得10
1分钟前
1分钟前
lsc完成签到,获得积分10
1分钟前
小fei完成签到,获得积分10
1分钟前
xiaoxie完成签到 ,获得积分10
1分钟前
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527