催化作用
解吸
电子转移
电化学
材料科学
量子点
化学工程
电极
纳米技术
化学
光化学
吸附
物理化学
有机化学
工程类
作者
Shiyu Lu,Shengwen Li,Jin Meng,Jiechang Gao,Yanning Zhang
标识
DOI:10.1016/j.apcatb.2020.118675
摘要
The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron transfer while prompting hydrogen evolution, but it is very challenging to achieve due to the tough trading off between water absorption and H-desorption ability of the catalyst. Herein, a unique high-surficial multi-heteroatomic catalytic process is realized by rationally design and tailor Ni3Sn2S2 dots-decorated thin Ni3S2 nanosheets to form sheets-on-sheets array self-supported electrode by simple hydrothermal process. The formed Ni3Sn2S2@Ni3S2-2 NF delivers a superior performance very close to the noble catalyst (Pt/C) at low current densities with an onset-potential of nearly 0 mV and overpotentials of 50.7 mV at 10 mA cm−2 while surprisingly surpassing Pt/C at high current densities. The outstanding HER performance of the catalyst can be ascribed that the rationally tuned multi-heterogeneous interfaces and electronic structure control can realize both strong water absorption and strong H atom desorption to not only significantly promotes fast electron transfer, but also greatly enhances the gas release toward efficient HER. This work holds a great promise to fabricate a non-noble HER catalyst for high-performance close to the noble catalysts such as Pt/C while shedding a light on fundamentals to guide construction of high-surficial heteroatomic multi-heterogeneous catalysts with superior performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI