A Learning-Based Incentive Mechanism for Federated Learning

计算机科学 激励 强化学习 GSM演进的增强数据速率 边缘计算 边缘设备 人工智能 机器学习 分布式计算 计算机网络 云计算 微观经济学 操作系统 经济
作者
Yufeng Zhan,Peng Li,Zhihao Qu,Deze Zeng,Song Guo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6360-6368 被引量:456
标识
DOI:10.1109/jiot.2020.2967772
摘要

Internet of Things (IoT) generates large amounts of data at the network edge. Machine learning models are often built on these data, to enable the detection, classification, and prediction of the future events. Due to network bandwidth, storage, and especially privacy concerns, it is often impossible to send all the IoT data to the data center for centralized model training. To address these issues, federated learning has been proposed to let nodes use the local data to train models, which are then aggregated to synthesize a global model. Most of the existing work has focused on designing learning algorithms with provable convergence time, but other issues, such as incentive mechanism, are unexplored. Although incentive mechanisms have been extensively studied in network and computation resource allocation, yet they cannot be applied to federated learning directly due to the unique challenges of information unsharing and difficulties of contribution evaluation. In this article, we study the incentive mechanism for federated learning to motivate edge nodes to contribute model training. Specifically, a deep reinforcement learning-based (DRL) incentive mechanism has been designed to determine the optimal pricing strategy for the parameter server and the optimal training strategies for edge nodes. Finally, numerical experiments have been implemented to evaluate the efficiency of the proposed DRL-based incentive mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助北至采纳,获得10
1秒前
张秉环完成签到 ,获得积分10
1秒前
一蓑烟雨任平生应助阿哈采纳,获得10
2秒前
qwe发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
白夜发布了新的文献求助10
3秒前
Clifford发布了新的文献求助10
7秒前
毛豆应助番茄采纳,获得20
7秒前
9秒前
Ava应助刘快乐采纳,获得10
9秒前
刘旺林完成签到,获得积分10
10秒前
Lucas应助12采纳,获得10
10秒前
10秒前
半边梅发布了新的文献求助10
13秒前
13秒前
Clifford完成签到,获得积分10
13秒前
mouxq发布了新的文献求助10
13秒前
呆萌的飞鸟完成签到,获得积分20
13秒前
14秒前
希望天下0贩的0应助qwe采纳,获得10
15秒前
15秒前
问夏发布了新的文献求助10
16秒前
18秒前
114hh发布了新的文献求助10
18秒前
Ck发布了新的文献求助10
19秒前
涂山发布了新的文献求助10
19秒前
21秒前
平常元灵发布了新的文献求助10
22秒前
22秒前
Akim应助Abraham采纳,获得10
22秒前
橙子完成签到,获得积分20
22秒前
黄函发布了新的文献求助10
24秒前
SSS发布了新的文献求助10
26秒前
26秒前
Ck完成签到,获得积分10
26秒前
27秒前
Mob发布了新的文献求助10
27秒前
半边梅完成签到,获得积分20
28秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422593
求助须知:如何正确求助?哪些是违规求助? 3022859
关于积分的说明 8902954
捐赠科研通 2710376
什么是DOI,文献DOI怎么找? 1486403
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682285