Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer

医学 队列 无线电技术 逻辑回归 判别式 人工智能 结直肠癌 置信区间 癌症 肿瘤科 内科学 放射科 计算机科学
作者
Xiaomei Wu,Yajun Li,Xin Chen,Yanqi Huang,Lan He,Ke Zhao,Xiaomei Huang,Wen Zhang,Y. Huang,Yexing Li,Mengyi Dong,Jia Huang,Ting Xia,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:27 (11): e254-e262 被引量:53
标识
DOI:10.1016/j.acra.2019.12.007
摘要

Rationale and Objectives We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC). Materials and Methods The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance. Results The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658–0.776) for the primary cohort and 0.720 (95% CI: 0.625–0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696–0.813) for the primary cohort and 0.786 (95% CI: 0.702–0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766–0.868) for the primary cohort and 0.832 (95% CI: 0.762–0.905) for the validation cohort. Conclusion This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC. We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC). The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance. The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658–0.776) for the primary cohort and 0.720 (95% CI: 0.625–0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696–0.813) for the primary cohort and 0.786 (95% CI: 0.702–0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766–0.868) for the primary cohort and 0.832 (95% CI: 0.762–0.905) for the validation cohort. This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sctaaa发布了新的文献求助10
刚刚
乐白完成签到,获得积分10
刚刚
刚刚
1秒前
1111完成签到 ,获得积分10
1秒前
2秒前
2秒前
恒星七纪发布了新的文献求助10
2秒前
大个应助笑点低的南琴采纳,获得10
2秒前
张贵虎完成签到 ,获得积分10
2秒前
3秒前
zzl-2000发布了新的文献求助10
3秒前
阿里院士完成签到,获得积分10
3秒前
4秒前
壮观梦易发布了新的文献求助10
5秒前
壮观梦易发布了新的文献求助10
5秒前
壮观梦易发布了新的文献求助10
5秒前
壮观梦易发布了新的文献求助30
5秒前
5秒前
壮观梦易发布了新的文献求助10
5秒前
壮观梦易发布了新的文献求助10
5秒前
壮观梦易发布了新的文献求助10
5秒前
壮观梦易发布了新的文献求助10
5秒前
wei完成签到,获得积分20
5秒前
ywb关闭了ywb文献求助
5秒前
6秒前
乐白发布了新的文献求助10
6秒前
谨慎的尔白完成签到,获得积分10
7秒前
HUJL完成签到,获得积分10
7秒前
kk发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
科目三应助三年H采纳,获得10
9秒前
9秒前
田様应助杨柳依依采纳,获得10
9秒前
CipherSage应助恒星七纪采纳,获得10
9秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141