亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer

医学 队列 无线电技术 逻辑回归 判别式 人工智能 结直肠癌 置信区间 威尔科克森符号秩检验 癌症 肿瘤科 内科学 放射科 曼惠特尼U检验 计算机科学
作者
Xiaomei Wu,Yajun Li,Xin Chen,Yanqi Huang,Lan He,Ke Zhao,Xiaomei Huang,Wen Zhang,Yujuan Huang,Yexing Li,Mei Dong,Jia Huang,Ting Xia,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:27 (11): e254-e262 被引量:47
标识
DOI:10.1016/j.acra.2019.12.007
摘要

Rationale and Objectives We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC). Materials and Methods The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance. Results The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658–0.776) for the primary cohort and 0.720 (95% CI: 0.625–0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696–0.813) for the primary cohort and 0.786 (95% CI: 0.702–0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766–0.868) for the primary cohort and 0.832 (95% CI: 0.762–0.905) for the validation cohort. Conclusion This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC. We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC). The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance. The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658–0.776) for the primary cohort and 0.720 (95% CI: 0.625–0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696–0.813) for the primary cohort and 0.786 (95% CI: 0.702–0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766–0.868) for the primary cohort and 0.832 (95% CI: 0.762–0.905) for the validation cohort. This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
GRATE完成签到 ,获得积分10
15秒前
16秒前
df发布了新的文献求助30
20秒前
df完成签到,获得积分10
33秒前
tt5114关注了科研通微信公众号
36秒前
烟花应助傻傻的修洁采纳,获得10
36秒前
00完成签到 ,获得积分10
42秒前
Lucas应助傻傻的修洁采纳,获得10
48秒前
CodeCraft应助Stella采纳,获得10
49秒前
科目三应助科研通管家采纳,获得10
58秒前
tt5114发布了新的文献求助30
1分钟前
1分钟前
顺利山柏发布了新的文献求助10
1分钟前
顺利山柏完成签到,获得积分10
1分钟前
捉迷藏完成签到,获得积分10
1分钟前
2分钟前
垚祎完成签到 ,获得积分10
2分钟前
Komolika发布了新的文献求助300
2分钟前
2分钟前
2分钟前
cc完成签到,获得积分10
2分钟前
haha发布了新的文献求助30
2分钟前
2分钟前
2分钟前
优美代玉发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Ares完成签到,获得积分10
3分钟前
tt5114完成签到,获得积分10
3分钟前
Dsweet发布了新的文献求助10
3分钟前
3分钟前
佳宝(不可以喝但能吃完成签到,获得积分10
3分钟前
cdu完成签到,获得积分10
4分钟前
bkagyin应助lzy采纳,获得10
4分钟前
丘比特应助veggieg采纳,获得10
4分钟前
4分钟前
Erictancqmu发布了新的文献求助10
4分钟前
Dsweet发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150511
求助须知:如何正确求助?哪些是违规求助? 2801891
关于积分的说明 7845964
捐赠科研通 2459257
什么是DOI,文献DOI怎么找? 1309145
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601735