内科学
内分泌学
胰岛素
2型糖尿病
糖尿病
胰岛素抵抗
脂滴
胰腺激素
化学
生物
医学
作者
Sabine Daemen,Anne Gemmink,Alexandra Paul,Nils Billecke,Katrina Rieger,Sapun H. Parekh,Matthijs K. C. Hesselink
出处
期刊:Diabetologia
[Springer Nature]
日期:2020-09-03
卷期号:63 (12): 2654-2664
被引量:10
标识
DOI:10.1007/s00125-020-05266-6
摘要
Intramyocellular lipid (IMCL) content associates with development of insulin resistance, albeit not in insulin-sensitive endurance-trained athletes (trained). Qualitative and spatial differences in muscle lipid composition may underlie this so-called athlete's paradox. Here we studied triacylglycerol (TAG) composition of individual myocellular lipid droplets (LDs) in trained individuals and individuals with type 2 diabetes mellitus.Trained ([Formula: see text] 71.0 ± 1.6 ml O2 [kg lean body mass (LBM)]-1 min-1), normoglycaemic (fasting glucose 5.1 ± 0.1 mmol/l) individuals and untrained ([Formula: see text] 36.8 ± 1.5 ml O2 [kg LBM]-1 min-1) individuals with type 2 diabetes (fasting glucose 7.4 ± 0.5 mmol/l), with similar IMCL content (3.5 ± 0.7% vs 2.5 ± 0.3%, p = 0.241), but at opposite ends of the insulin sensitivity spectrum (glucose infusion rate 93.8 ± 6.6 vs 25.7 ± 5.3 μmol [kg LBM]-1 min-1 for trained individuals and those with type 2 diabetes, respectively) were included from our database in the present study. We applied in situ label-free broadband coherent anti-Stokes Raman scattering (CARS) microscopy to sections from skeletal muscle biopsies to measure TAG acyl chain length and saturation of myocellular LDs. This approach uniquely permits examination of individual LDs in their native environment, in a fibre-type-specific manner, taking into account LD size and subcellular location.Despite a significant difference in insulin sensitivity, we observed remarkably similar acyl chain length and saturation in trained and type 2 diabetic individuals (chain length: 18.12 ± 0.61 vs 18.36 ± 0.43 number of carbons; saturation: 0.37 ± 0.05 vs 0.38 ± 0.06 number of C=C bonds). Longer acyl chains or higher saturation (lower C=C number) could be detected in subpopulations of LDs, i.e. large LDs (chain length: 18.11 ± 0.48 vs 18.63 ± 0.57 carbon number) and subsarcolemmal LDs (saturation: 0.34 ± 0.02 vs 0.36 ± 0.04 C=C number), which are more abundant in individuals with type 2 diabetes.In contrast to reports of profound differences in the lipid composition of lipids extracted from skeletal muscle from trained and type 2 diabetic individuals, our in situ, LD-specific approach detected only modest differences in TAG composition in LD subpopulations, which were dependent on LD size and subcellular location. If, and to what extent, these modest differences can impact insulin sensitivity remains to be elucidated. Graphical abstract.
科研通智能强力驱动
Strongly Powered by AbleSci AI