MEMS piezoelectric micro power harvester physical parameter optimization, simulation, and fabrication for extremely low frequency and low vibration level applications

田口方法 多物理 压电 材料科学 振动 声学 微电子机械系统 电子工程 工程类 光电子学 复合材料 有限元法 结构工程 物理
作者
Mohd H. S. Alrashdan
标识
DOI:10.1016/j.mejo.2020.104894
摘要

In the last decade, the Piezoelectric Micro Power Harvesters (PMPH) has had a significant attention to produce self-powered small electronic devices at high frequency range. This paper discusses the effects of the PMPH control factor on the PMPH performances including Electric Energy Density and the Normal Electric Field using Taguchi optimization method. Furthermore, the study uses the ANOVA test and the Multivariable linear Regression model to confirm the Taguchi method. Also, it studies the PMPH with optimal control factor simulate through COMSOL Multiphysics 5.4 software. Then, it studies the PMPH first resonance frequency mode with Eigen-Frequency analysis. Moreover, the PMPH performances simulate in time domain through the transient analysis. Therefore, the PMPH is fabricated; it uses silicon substrate coated on both sides with a silicon nitride insulation layer, piezoelectric material is deposited on top of the insulation layer using the RF sputtering technique, the interdigitated gold electrodes (IDEs) are deposited using the DC sputtering, and a proof mass is used to lower the resonance frequency. Furthermore, the fabricated PMPH will be tested with base shaker experiment. Taguchi, ANOVA, and multivariable linear regression analyses results confirm each other. The paper concludes that the piezoelectric material, piezoelectric layer thickness, and silicon membrane thickness are the most three-factors influence the PMPH performances at low vibration levels and extremely low frequency about 1.2 Hz. On the other hand, the piezoelectric layer width and insulator width are the lowest control factors affect the PMPH performances. The PMPH with an optimum parameters simulation results as following, it vibrates at 2.59 Hz with an acceleration magnitude of 0.9 g and the maximum electric energy density of 400 Jm−3. The fabricated PMPH vibrates at the first resonance frequency of 1.2 Hz with acceleration magnitude of 0.9 g. Also, the study finds out that the optimum loading resister of 200 KΩ is found, associated with open-circuit voltage of 18.52 Vp−p. Also, the PMPH produces a maximum electric output power of 135 μW and maximum electric power density of 26.1 mWCm−3. The PMPH Simulation and fabrication results support each other and they demonstrate that the proposed PMPH can work probably at low vibration levels and at extremely low frequency about 1 Hz. Which makes the PMPH suitable for powering small electronic devices, such as cardiac pacemakers and other small medical implants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk发布了新的文献求助10
刚刚
刚刚
充电宝应助刻苦友安采纳,获得20
2秒前
小哀完成签到,获得积分10
2秒前
2秒前
2秒前
情怀应助2421154880采纳,获得10
2秒前
岳维芸发布了新的文献求助10
3秒前
3秒前
3秒前
d叨叨鱼发布了新的文献求助10
3秒前
ycxlb发布了新的文献求助10
3秒前
Lin发布了新的文献求助10
4秒前
zhang完成签到,获得积分10
5秒前
影影发布了新的文献求助10
6秒前
slow发布了新的文献求助10
6秒前
灿灿呀完成签到,获得积分20
7秒前
7秒前
圣晟胜完成签到,获得积分10
7秒前
张伯伦发布了新的文献求助10
7秒前
苏莉完成签到,获得积分10
7秒前
LarryC完成签到,获得积分10
8秒前
8秒前
jlw完成签到,获得积分10
8秒前
8秒前
9秒前
Lucas应助ZYYYY采纳,获得10
9秒前
星期八完成签到,获得积分10
9秒前
贾不努力发布了新的文献求助10
10秒前
学术智子完成签到,获得积分10
10秒前
浮游应助小魏采纳,获得10
10秒前
10秒前
涛涛完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
YN3585发布了新的文献求助10
12秒前
蜡笔小新完成签到,获得积分10
12秒前
无限思真完成签到,获得积分10
12秒前
Aliquat_336发布了新的文献求助10
12秒前
IRISR完成签到,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186