MEMS piezoelectric micro power harvester physical parameter optimization, simulation, and fabrication for extremely low frequency and low vibration level applications

田口方法 多物理 压电 材料科学 振动 声学 微电子机械系统 电子工程 工程类 光电子学 复合材料 有限元法 结构工程 物理
作者
Mohd H. S. Alrashdan
标识
DOI:10.1016/j.mejo.2020.104894
摘要

In the last decade, the Piezoelectric Micro Power Harvesters (PMPH) has had a significant attention to produce self-powered small electronic devices at high frequency range. This paper discusses the effects of the PMPH control factor on the PMPH performances including Electric Energy Density and the Normal Electric Field using Taguchi optimization method. Furthermore, the study uses the ANOVA test and the Multivariable linear Regression model to confirm the Taguchi method. Also, it studies the PMPH with optimal control factor simulate through COMSOL Multiphysics 5.4 software. Then, it studies the PMPH first resonance frequency mode with Eigen-Frequency analysis. Moreover, the PMPH performances simulate in time domain through the transient analysis. Therefore, the PMPH is fabricated; it uses silicon substrate coated on both sides with a silicon nitride insulation layer, piezoelectric material is deposited on top of the insulation layer using the RF sputtering technique, the interdigitated gold electrodes (IDEs) are deposited using the DC sputtering, and a proof mass is used to lower the resonance frequency. Furthermore, the fabricated PMPH will be tested with base shaker experiment. Taguchi, ANOVA, and multivariable linear regression analyses results confirm each other. The paper concludes that the piezoelectric material, piezoelectric layer thickness, and silicon membrane thickness are the most three-factors influence the PMPH performances at low vibration levels and extremely low frequency about 1.2 Hz. On the other hand, the piezoelectric layer width and insulator width are the lowest control factors affect the PMPH performances. The PMPH with an optimum parameters simulation results as following, it vibrates at 2.59 Hz with an acceleration magnitude of 0.9 g and the maximum electric energy density of 400 Jm−3. The fabricated PMPH vibrates at the first resonance frequency of 1.2 Hz with acceleration magnitude of 0.9 g. Also, the study finds out that the optimum loading resister of 200 KΩ is found, associated with open-circuit voltage of 18.52 Vp−p. Also, the PMPH produces a maximum electric output power of 135 μW and maximum electric power density of 26.1 mWCm−3. The PMPH Simulation and fabrication results support each other and they demonstrate that the proposed PMPH can work probably at low vibration levels and at extremely low frequency about 1 Hz. Which makes the PMPH suitable for powering small electronic devices, such as cardiac pacemakers and other small medical implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助10
刚刚
星辰大海应助系统提示采纳,获得10
1秒前
1秒前
sss完成签到,获得积分10
1秒前
1秒前
板凳完成签到,获得积分10
2秒前
单纯访枫发布了新的文献求助30
2秒前
bin0920发布了新的文献求助10
2秒前
aaaaaa完成签到,获得积分10
3秒前
tangsuyun完成签到,获得积分20
3秒前
MADKAI发布了新的文献求助50
3秒前
大方小白完成签到,获得积分10
3秒前
xiaokezhang发布了新的文献求助10
3秒前
3秒前
zhenzhen发布了新的文献求助10
4秒前
4秒前
hz_sz完成签到,获得积分10
5秒前
5秒前
空白完成签到,获得积分10
5秒前
所所应助合适苗条采纳,获得10
5秒前
专注易绿完成签到,获得积分10
6秒前
Anne应助吱嗷赵采纳,获得10
6秒前
xin应助666采纳,获得20
7秒前
YY发布了新的文献求助10
7秒前
7秒前
huanhuan完成签到,获得积分10
8秒前
小刘不笨完成签到,获得积分10
8秒前
吕绪特完成签到 ,获得积分10
8秒前
9秒前
愉快的夏菡完成签到,获得积分10
9秒前
研友_gnv61n完成签到,获得积分10
9秒前
zmy完成签到,获得积分10
9秒前
小蘑菇应助守约采纳,获得10
10秒前
10秒前
空白发布了新的文献求助10
11秒前
buno应助721采纳,获得20
11秒前
石阶上完成签到 ,获得积分10
11秒前
du完成签到 ,获得积分10
11秒前
Xu完成签到,获得积分10
12秒前
mmmm完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678