MEMS piezoelectric micro power harvester physical parameter optimization, simulation, and fabrication for extremely low frequency and low vibration level applications

田口方法 多物理 压电 材料科学 振动 声学 微电子机械系统 电子工程 工程类 光电子学 复合材料 有限元法 结构工程 物理
作者
Mohd H. S. Alrashdan
标识
DOI:10.1016/j.mejo.2020.104894
摘要

In the last decade, the Piezoelectric Micro Power Harvesters (PMPH) has had a significant attention to produce self-powered small electronic devices at high frequency range. This paper discusses the effects of the PMPH control factor on the PMPH performances including Electric Energy Density and the Normal Electric Field using Taguchi optimization method. Furthermore, the study uses the ANOVA test and the Multivariable linear Regression model to confirm the Taguchi method. Also, it studies the PMPH with optimal control factor simulate through COMSOL Multiphysics 5.4 software. Then, it studies the PMPH first resonance frequency mode with Eigen-Frequency analysis. Moreover, the PMPH performances simulate in time domain through the transient analysis. Therefore, the PMPH is fabricated; it uses silicon substrate coated on both sides with a silicon nitride insulation layer, piezoelectric material is deposited on top of the insulation layer using the RF sputtering technique, the interdigitated gold electrodes (IDEs) are deposited using the DC sputtering, and a proof mass is used to lower the resonance frequency. Furthermore, the fabricated PMPH will be tested with base shaker experiment. Taguchi, ANOVA, and multivariable linear regression analyses results confirm each other. The paper concludes that the piezoelectric material, piezoelectric layer thickness, and silicon membrane thickness are the most three-factors influence the PMPH performances at low vibration levels and extremely low frequency about 1.2 Hz. On the other hand, the piezoelectric layer width and insulator width are the lowest control factors affect the PMPH performances. The PMPH with an optimum parameters simulation results as following, it vibrates at 2.59 Hz with an acceleration magnitude of 0.9 g and the maximum electric energy density of 400 Jm−3. The fabricated PMPH vibrates at the first resonance frequency of 1.2 Hz with acceleration magnitude of 0.9 g. Also, the study finds out that the optimum loading resister of 200 KΩ is found, associated with open-circuit voltage of 18.52 Vp−p. Also, the PMPH produces a maximum electric output power of 135 μW and maximum electric power density of 26.1 mWCm−3. The PMPH Simulation and fabrication results support each other and they demonstrate that the proposed PMPH can work probably at low vibration levels and at extremely low frequency about 1 Hz. Which makes the PMPH suitable for powering small electronic devices, such as cardiac pacemakers and other small medical implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞飞完成签到,获得积分10
2秒前
苽峰完成签到,获得积分10
2秒前
酷波er应助龙龙采纳,获得10
3秒前
3秒前
kingmantj发布了新的文献求助10
3秒前
4秒前
还不错的橙子完成签到,获得积分10
4秒前
爆米花应助苒ran采纳,获得10
6秒前
6秒前
静默向上发布了新的文献求助10
7秒前
8秒前
8秒前
小凉发布了新的文献求助10
9秒前
10秒前
怕黑的静蕾应助芭娜55采纳,获得10
11秒前
smile发布了新的文献求助30
11秒前
12秒前
怕黑的静蕾应助树袋采纳,获得10
12秒前
风趣小蜜蜂完成签到,获得积分10
12秒前
momo发布了新的文献求助10
13秒前
huiyuan完成签到,获得积分10
14秒前
Orange应助smile采纳,获得30
15秒前
15秒前
七熵完成签到 ,获得积分0
16秒前
16秒前
17秒前
18秒前
GQL发布了新的文献求助10
18秒前
飘逸小懒猪应助hg采纳,获得10
18秒前
19秒前
19秒前
Akinmide完成签到 ,获得积分10
19秒前
静默向上完成签到,获得积分10
20秒前
FDY发布了新的文献求助10
20秒前
21秒前
21秒前
小唐完成签到,获得积分10
21秒前
22秒前
zhang完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420