计算机科学
决策树
特征选择
特征(语言学)
增量决策树
人工智能
ID3算法
模式识别(心理学)
预处理器
决策树学习
最小冗余特征选择
树(集合论)
数据挖掘
数据预处理
滤波器(信号处理)
选择(遗传算法)
精确性和召回率
算法
机器学习
数学
数学分析
哲学
语言学
计算机视觉
作者
Hongfang Zhou,Jiawei Zhang,YueQing Zhou,Xiaojie Guo,Yiming Ma
标识
DOI:10.1016/j.eswa.2020.113842
摘要
In order to improve the classification accuracy, a preprocessing step is used to pre-filter some redundant or irrelevant features before decision tree construction. And a new feature selection algorithm FWDT is proposed based on this. Experimental results show that FWDT our proposed method performs better for the measures of accuracy, recall and F1-score. Furthermore, it can reduce the required time in constructing the decision tree.
科研通智能强力驱动
Strongly Powered by AbleSci AI