高光谱成像
数学
活力
多元统计
偏最小二乘回归
发芽
人工智能
模式识别(心理学)
统计
计算机科学
植物
生物
遗传学
作者
Lei Pang,Jinghua Wang,Sen Men,Yan Lei,Jing Xiao
标识
DOI:10.1016/j.saa.2020.118888
摘要
In this study, the feasibility of estimation and forecast of different vitality Quercus variabilis seeds by a hyperspectral imaging technique were investigated. Artificially accelerated aging was conducive to achieve the division of four vitality levels. Hyperspectral data in the first 10 h of germination were continuously collected at one-hour intervals. The optimal band was selected for the original and pre-processed spectra which were treated by multiple scatter correction (MSC) and the Savitzky-Golay first derivative (SG 1st). Five characteristic wavelength methods were compared: successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), variable important in projection (VIP), and random frog (RF). Partial least square-discriminant analysis (PLS-DA) and K-nearest neighbor (KNN) built the vitality estimation model based on different data sets, and GA + PLS-DA constructed the optimal model with the highest accuracy. According to the weight coefficient and reflectance of the characteristic band extracted by the GA, the reflectance curves of different levels over time were plotted. The data of 0 h was employed to establish the vitality forecast model. The forecast model had a high recognition rate, with PLS-DA exceeding 99% and KNN exceeding 85%. This indicated that hyperspectral imaging of seed germination processes could achieve non-destructive estimation of Q. variabilis seed vitality, and accurate prediction in a shorter time is feasible.
科研通智能强力驱动
Strongly Powered by AbleSci AI