氢胺化
化学
钌
烯烃
马尔科夫尼科夫法则
催化作用
胺化
亚胺
还原消去
光化学
组合化学
有机化学
区域选择性
作者
Senjie Ma,Christopher K. Hill,Casey L. Olen,John F. Hartwig
摘要
Hydroamination of alkenes catalyzed by transition-metal complexes is an atom-economical method for the synthesis of amines, but reactions of unactivated alkenes remain inefficient. Additions of N–H bonds to such alkenes catalyzed by iridium, gold, and lanthanide catalysts are known, but they have required a large excess of the alkene. New mechanisms for such processes involving metals rarely used previously for hydroamination could enable these reactions to occur with greater efficiency. We report ruthenium-catalyzed intermolecular hydroaminations of a variety of unactivated terminal alkenes without the need for an excess of alkene and with 2-aminopyridine as an ammonia surrogate to give the Markovnikov addition product. Ruthenium complexes have rarely been used for hydroaminations and have not previously catalyzed such reactions with unactivated alkenes. Identification of the catalyst resting state, kinetic measurements, deuterium labeling studies, and DFT computations were conducted and, together, strongly suggest that this process occurs by a new mechanism for hydroamination occurring by oxidative amination in concert with reduction of the resulting imine.
科研通智能强力驱动
Strongly Powered by AbleSci AI