Burn Images Segmentation Based on Burn-GAN

分割 计算机科学 人工智能 计算机视觉 像素 图像分割
作者
Fei Dai,Dengyi Zhang,Kehua Su,Xin Ning
出处
期刊:Journal of Burn Care & Research [Oxford University Press]
卷期号:42 (4): 755-762 被引量:15
标识
DOI:10.1093/jbcr/iraa208
摘要

Burn injuries are severe problems for human. Accurate segmentation for burn wounds in patient surface can improve the calculation precision of %TBSA (total burn surface area), which is helpful in determining treatment plan. Recently, deep learning methods have been used to automatically segment wounds. However, owing to the difficulty of collecting relevant images as training data, those methods cannot often achieve fine segmentation. A burn image-generating framework is proposed in this paper to generate burn image datasets with annotations automatically. Those datasets can be used to increase segmentation accuracy and save the time of annotating. This paper brings forward an advanced burn image generation framework called Burn-GAN. The framework consists of four parts: Generating burn wounds based on the mainstream Style-GAN network; Fusing wounds with human skins by Color Adjusted Seamless Cloning (CASC); Simulating real burn scene in three-dimensional space; Acquiring annotated dataset through three-dimensional and local burn coordinates transformation. Using this framework, a large variety of burn image datasets can be obtained. Finally, standard metrics like precision, Pixel Accuracy (PA) and Dice Coefficient (DC) were utilized to assess the framework. With nonsaturating loss with R2 regularization (NSLR2) and CASC, the segmentation network gains the best results. The framework achieved precision at 90.75%, PA at 96.88% and improved the DC from 84.5 to 89.3%. A burn data-generating framework have been built to improve the segmentation network, which can automatically segment burn images with higher accuracy and less time than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll发布了新的文献求助80
2秒前
2秒前
Zhangll完成签到,获得积分10
3秒前
七七完成签到,获得积分20
4秒前
ZZICU完成签到,获得积分10
4秒前
5秒前
youlan完成签到,获得积分20
5秒前
夏宋完成签到,获得积分10
5秒前
李健应助皮蛋采纳,获得10
6秒前
TRY发布了新的文献求助10
6秒前
七七发布了新的文献求助10
7秒前
Chosen_1完成签到,获得积分10
7秒前
8秒前
9秒前
星辰大海应助芋泥芝士采纳,获得10
9秒前
10秒前
He完成签到,获得积分10
10秒前
Kilig发布了新的文献求助10
12秒前
1010发布了新的文献求助10
13秒前
好好读书发布了新的文献求助10
14秒前
皮皮关注了科研通微信公众号
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
浮游应助苹果味水果采纳,获得10
15秒前
16秒前
16秒前
18秒前
哈no完成签到,获得积分10
18秒前
19秒前
MoriZhang完成签到,获得积分10
19秒前
20秒前
20秒前
DT发布了新的文献求助10
21秒前
赵千灵发布了新的文献求助10
21秒前
自行车v完成签到,获得积分10
21秒前
23秒前
23秒前
CoCo完成签到,获得积分10
23秒前
高高雅青完成签到,获得积分20
24秒前
沉静代秋发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582