Burn Images Segmentation Based on Burn-GAN

分割 计算机科学 人工智能 计算机视觉 像素 图像分割
作者
Fei Dai,Dengyi Zhang,Kehua Su,Xin Ning
出处
期刊:Journal of Burn Care & Research [Oxford University Press]
卷期号:42 (4): 755-762 被引量:15
标识
DOI:10.1093/jbcr/iraa208
摘要

Burn injuries are severe problems for human. Accurate segmentation for burn wounds in patient surface can improve the calculation precision of %TBSA (total burn surface area), which is helpful in determining treatment plan. Recently, deep learning methods have been used to automatically segment wounds. However, owing to the difficulty of collecting relevant images as training data, those methods cannot often achieve fine segmentation. A burn image-generating framework is proposed in this paper to generate burn image datasets with annotations automatically. Those datasets can be used to increase segmentation accuracy and save the time of annotating. This paper brings forward an advanced burn image generation framework called Burn-GAN. The framework consists of four parts: Generating burn wounds based on the mainstream Style-GAN network; Fusing wounds with human skins by Color Adjusted Seamless Cloning (CASC); Simulating real burn scene in three-dimensional space; Acquiring annotated dataset through three-dimensional and local burn coordinates transformation. Using this framework, a large variety of burn image datasets can be obtained. Finally, standard metrics like precision, Pixel Accuracy (PA) and Dice Coefficient (DC) were utilized to assess the framework. With nonsaturating loss with R2 regularization (NSLR2) and CASC, the segmentation network gains the best results. The framework achieved precision at 90.75%, PA at 96.88% and improved the DC from 84.5 to 89.3%. A burn data-generating framework have been built to improve the segmentation network, which can automatically segment burn images with higher accuracy and less time than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小唐尼发布了新的文献求助10
1秒前
2秒前
Jasper应助yes采纳,获得10
2秒前
vvv完成签到 ,获得积分10
2秒前
高高完成签到 ,获得积分10
4秒前
852应助欣慰的乌冬面采纳,获得50
4秒前
orixero应助yolo采纳,获得10
5秒前
6秒前
8秒前
科学完成签到,获得积分20
8秒前
ZHH完成签到,获得积分10
9秒前
酷波er应助昵称采纳,获得10
10秒前
斯文败类应助zhl采纳,获得10
11秒前
11秒前
12秒前
12秒前
Orange应助xiaoyeken采纳,获得10
12秒前
12秒前
咯噔完成签到,获得积分10
13秒前
无花果应助科研通管家采纳,获得10
14秒前
yx_cheng应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
yes发布了新的文献求助10
15秒前
西西发布了新的文献求助10
15秒前
Ava应助工藤新一采纳,获得10
15秒前
16秒前
17秒前
李健应助Atec采纳,获得10
19秒前
大模型应助柚子茶茶茶采纳,获得10
21秒前
21秒前
怕黑不惜完成签到,获得积分10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975426
求助须知:如何正确求助?哪些是违规求助? 3519848
关于积分的说明 11199831
捐赠科研通 3256122
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305