Burn Images Segmentation Based on Burn-GAN

分割 计算机科学 人工智能 计算机视觉 像素 图像分割
作者
Fei Dai,Dengyi Zhang,Kehua Su,Xin Ning
出处
期刊:Journal of Burn Care & Research [Oxford University Press]
卷期号:42 (4): 755-762 被引量:15
标识
DOI:10.1093/jbcr/iraa208
摘要

Burn injuries are severe problems for human. Accurate segmentation for burn wounds in patient surface can improve the calculation precision of %TBSA (total burn surface area), which is helpful in determining treatment plan. Recently, deep learning methods have been used to automatically segment wounds. However, owing to the difficulty of collecting relevant images as training data, those methods cannot often achieve fine segmentation. A burn image-generating framework is proposed in this paper to generate burn image datasets with annotations automatically. Those datasets can be used to increase segmentation accuracy and save the time of annotating. This paper brings forward an advanced burn image generation framework called Burn-GAN. The framework consists of four parts: Generating burn wounds based on the mainstream Style-GAN network; Fusing wounds with human skins by Color Adjusted Seamless Cloning (CASC); Simulating real burn scene in three-dimensional space; Acquiring annotated dataset through three-dimensional and local burn coordinates transformation. Using this framework, a large variety of burn image datasets can be obtained. Finally, standard metrics like precision, Pixel Accuracy (PA) and Dice Coefficient (DC) were utilized to assess the framework. With nonsaturating loss with R2 regularization (NSLR2) and CASC, the segmentation network gains the best results. The framework achieved precision at 90.75%, PA at 96.88% and improved the DC from 84.5 to 89.3%. A burn data-generating framework have been built to improve the segmentation network, which can automatically segment burn images with higher accuracy and less time than traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王者归来完成签到,获得积分10
刚刚
Borwn完成签到,获得积分10
1秒前
Oorrmm应助斯文的斌采纳,获得10
2秒前
俊逸香岚发布了新的文献求助10
2秒前
你好啊给你好啊的求助进行了留言
2秒前
dyfsj发布了新的文献求助10
3秒前
4秒前
4秒前
爱笑凡白发布了新的文献求助10
4秒前
青苗泡完成签到,获得积分10
5秒前
5秒前
5秒前
wad1314完成签到,获得积分10
5秒前
readhistory发布了新的文献求助10
5秒前
Ira1005发布了新的文献求助10
7秒前
cindy完成签到,获得积分10
7秒前
阿猫阿猫一个葡萄树完成签到 ,获得积分10
7秒前
7秒前
9秒前
9秒前
沈瑶完成签到,获得积分10
10秒前
rodney2023发布了新的文献求助30
10秒前
10秒前
10秒前
LILI2发布了新的文献求助10
12秒前
12秒前
青苗泡发布了新的文献求助10
14秒前
15秒前
Nicky_N完成签到,获得积分20
16秒前
友好灵阳完成签到 ,获得积分10
17秒前
轻松念双完成签到,获得积分10
17秒前
17秒前
慕青应助SunGuangkai采纳,获得10
17秒前
17秒前
zwk发布了新的文献求助30
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
bkagyin应助年年年年采纳,获得10
20秒前
liu完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524661
求助须知:如何正确求助?哪些是违规求助? 4615154
关于积分的说明 14546595
捐赠科研通 4553141
什么是DOI,文献DOI怎么找? 2495163
邀请新用户注册赠送积分活动 1475760
关于科研通互助平台的介绍 1447541