Burn Images Segmentation Based on Burn-GAN

分割 计算机科学 人工智能 计算机视觉 像素 图像分割
作者
Fei Dai,Dengyi Zhang,Kehua Su,Xin Ning
出处
期刊:Journal of Burn Care & Research [Oxford University Press]
卷期号:42 (4): 755-762 被引量:15
标识
DOI:10.1093/jbcr/iraa208
摘要

Burn injuries are severe problems for human. Accurate segmentation for burn wounds in patient surface can improve the calculation precision of %TBSA (total burn surface area), which is helpful in determining treatment plan. Recently, deep learning methods have been used to automatically segment wounds. However, owing to the difficulty of collecting relevant images as training data, those methods cannot often achieve fine segmentation. A burn image-generating framework is proposed in this paper to generate burn image datasets with annotations automatically. Those datasets can be used to increase segmentation accuracy and save the time of annotating. This paper brings forward an advanced burn image generation framework called Burn-GAN. The framework consists of four parts: Generating burn wounds based on the mainstream Style-GAN network; Fusing wounds with human skins by Color Adjusted Seamless Cloning (CASC); Simulating real burn scene in three-dimensional space; Acquiring annotated dataset through three-dimensional and local burn coordinates transformation. Using this framework, a large variety of burn image datasets can be obtained. Finally, standard metrics like precision, Pixel Accuracy (PA) and Dice Coefficient (DC) were utilized to assess the framework. With nonsaturating loss with R2 regularization (NSLR2) and CASC, the segmentation network gains the best results. The framework achieved precision at 90.75%, PA at 96.88% and improved the DC from 84.5 to 89.3%. A burn data-generating framework have been built to improve the segmentation network, which can automatically segment burn images with higher accuracy and less time than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho关闭了zho文献求助
刚刚
研友_VZG7GZ应助开朗以亦采纳,获得10
刚刚
Owen应助xiaxia采纳,获得10
1秒前
Mr.egg发布了新的文献求助10
1秒前
碧蓝的寻云完成签到,获得积分10
1秒前
Eton发布了新的文献求助200
2秒前
Hello应助执剑燃此生采纳,获得10
2秒前
武玉坤发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
MoO发布了新的文献求助10
3秒前
爆米花应助雪白起眸采纳,获得10
3秒前
simon发布了新的文献求助10
3秒前
爱学习的火龙果应助子枫采纳,获得10
3秒前
3秒前
4秒前
4秒前
奋斗的凡关注了科研通微信公众号
4秒前
5秒前
5秒前
露dew完成签到 ,获得积分10
5秒前
怡然书桃发布了新的文献求助10
5秒前
6秒前
陈淑玲发布了新的文献求助10
7秒前
7秒前
文献求求求完成签到,获得积分10
7秒前
bkagyin应助慧子采纳,获得10
8秒前
慕山发布了新的文献求助10
8秒前
qwerty发布了新的文献求助10
9秒前
9秒前
simon完成签到,获得积分10
10秒前
荒野完成签到,获得积分20
10秒前
爆米花应助美丽钢铁侠采纳,获得10
10秒前
10秒前
无则灵完成签到,获得积分10
10秒前
我艾吃饭完成签到,获得积分20
11秒前
怡然书桃完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296818
求助须知:如何正确求助?哪些是违规求助? 2932518
关于积分的说明 8457314
捐赠科研通 2605021
什么是DOI,文献DOI怎么找? 1422147
科研通“疑难数据库(出版商)”最低求助积分说明 661308
邀请新用户注册赠送积分活动 644397