已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Burn Images Segmentation Based on Burn-GAN

分割 计算机科学 人工智能 计算机视觉 像素 图像分割
作者
Fei Dai,Dengyi Zhang,Kehua Su,Xin Ning
出处
期刊:Journal of Burn Care & Research [Oxford University Press]
卷期号:42 (4): 755-762 被引量:15
标识
DOI:10.1093/jbcr/iraa208
摘要

Burn injuries are severe problems for human. Accurate segmentation for burn wounds in patient surface can improve the calculation precision of %TBSA (total burn surface area), which is helpful in determining treatment plan. Recently, deep learning methods have been used to automatically segment wounds. However, owing to the difficulty of collecting relevant images as training data, those methods cannot often achieve fine segmentation. A burn image-generating framework is proposed in this paper to generate burn image datasets with annotations automatically. Those datasets can be used to increase segmentation accuracy and save the time of annotating. This paper brings forward an advanced burn image generation framework called Burn-GAN. The framework consists of four parts: Generating burn wounds based on the mainstream Style-GAN network; Fusing wounds with human skins by Color Adjusted Seamless Cloning (CASC); Simulating real burn scene in three-dimensional space; Acquiring annotated dataset through three-dimensional and local burn coordinates transformation. Using this framework, a large variety of burn image datasets can be obtained. Finally, standard metrics like precision, Pixel Accuracy (PA) and Dice Coefficient (DC) were utilized to assess the framework. With nonsaturating loss with R2 regularization (NSLR2) and CASC, the segmentation network gains the best results. The framework achieved precision at 90.75%, PA at 96.88% and improved the DC from 84.5 to 89.3%. A burn data-generating framework have been built to improve the segmentation network, which can automatically segment burn images with higher accuracy and less time than traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助科研通管家采纳,获得10
1秒前
英姑应助可靠幼旋采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
十六发布了新的文献求助10
5秒前
苹什猫完成签到,获得积分20
9秒前
十六完成签到,获得积分10
10秒前
孙涛完成签到,获得积分10
10秒前
10秒前
孙涛发布了新的文献求助10
13秒前
18秒前
tjnksy完成签到,获得积分10
19秒前
天天快乐应助Sybsy采纳,获得10
20秒前
乐乐应助孙涛采纳,获得10
21秒前
24秒前
宁海发布了新的文献求助10
25秒前
大龙哥886应助GY97采纳,获得10
27秒前
gxmu6322完成签到,获得积分10
32秒前
lfl完成签到,获得积分20
35秒前
36秒前
大学生完成签到 ,获得积分10
36秒前
宁海完成签到,获得积分10
38秒前
39秒前
吴兰田完成签到,获得积分10
39秒前
sadascaqwqw发布了新的文献求助10
39秒前
null应助哲别采纳,获得10
40秒前
lfl发布了新的文献求助10
40秒前
忧郁的煎蛋完成签到 ,获得积分10
42秒前
yhgz完成签到,获得积分10
44秒前
哈哈哈发布了新的文献求助10
44秒前
LUYI完成签到,获得积分10
47秒前
科研通AI6应助lfl采纳,获得10
50秒前
温柔发卡完成签到 ,获得积分10
50秒前
万能图书馆应助Fng11采纳,获得10
53秒前
欧阳慧玲完成签到 ,获得积分10
55秒前
打打应助哈哈哈采纳,获得10
57秒前
柒年啵啵完成签到 ,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581