Burn Images Segmentation Based on Burn-GAN

分割 计算机科学 人工智能 计算机视觉 像素 图像分割
作者
Fei Dai,Dengyi Zhang,Kehua Su,Xin Ning
出处
期刊:Journal of Burn Care & Research [Oxford University Press]
卷期号:42 (4): 755-762 被引量:15
标识
DOI:10.1093/jbcr/iraa208
摘要

Burn injuries are severe problems for human. Accurate segmentation for burn wounds in patient surface can improve the calculation precision of %TBSA (total burn surface area), which is helpful in determining treatment plan. Recently, deep learning methods have been used to automatically segment wounds. However, owing to the difficulty of collecting relevant images as training data, those methods cannot often achieve fine segmentation. A burn image-generating framework is proposed in this paper to generate burn image datasets with annotations automatically. Those datasets can be used to increase segmentation accuracy and save the time of annotating. This paper brings forward an advanced burn image generation framework called Burn-GAN. The framework consists of four parts: Generating burn wounds based on the mainstream Style-GAN network; Fusing wounds with human skins by Color Adjusted Seamless Cloning (CASC); Simulating real burn scene in three-dimensional space; Acquiring annotated dataset through three-dimensional and local burn coordinates transformation. Using this framework, a large variety of burn image datasets can be obtained. Finally, standard metrics like precision, Pixel Accuracy (PA) and Dice Coefficient (DC) were utilized to assess the framework. With nonsaturating loss with R2 regularization (NSLR2) and CASC, the segmentation network gains the best results. The framework achieved precision at 90.75%, PA at 96.88% and improved the DC from 84.5 to 89.3%. A burn data-generating framework have been built to improve the segmentation network, which can automatically segment burn images with higher accuracy and less time than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Krismile完成签到,获得积分10
4秒前
Nefelibate完成签到 ,获得积分10
4秒前
6秒前
6秒前
6秒前
8秒前
135完成签到 ,获得积分10
10秒前
Cecilia发布了新的文献求助10
13秒前
zhu完成签到,获得积分10
13秒前
KKIII发布了新的文献求助30
14秒前
14秒前
14秒前
15秒前
16秒前
16秒前
18秒前
18秒前
根号3完成签到 ,获得积分10
18秒前
洛洛发布了新的文献求助10
20秒前
Ya发布了新的文献求助10
20秒前
留猪完成签到,获得积分10
20秒前
JiangYifan完成签到 ,获得积分10
20秒前
张泽轩发布了新的文献求助10
21秒前
烂漫立轩发布了新的文献求助10
21秒前
21秒前
22秒前
祗想静静嘚完成签到 ,获得积分10
22秒前
骆烙发布了新的文献求助10
22秒前
23秒前
布丁发布了新的文献求助10
23秒前
牧秋妈妈完成签到,获得积分10
24秒前
汉堡包应助我是熊大采纳,获得10
25秒前
无问完成签到,获得积分10
26秒前
可靠寒云完成签到,获得积分10
27秒前
何东玲发布了新的文献求助10
27秒前
牧秋妈妈发布了新的文献求助10
27秒前
27秒前
淡然的菲鹰完成签到 ,获得积分10
27秒前
liuhhhh完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592