亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GANMcC: A Generative Adversarial Network With Multiclassification Constraints for Infrared and Visible Image Fusion

发电机(电路理论) 公制(单位) 对比度(视觉) 保险丝(电气) 图像融合 红外线的 人工智能 计算机视觉 计算机科学 生成对抗网络 生成语法 融合 图像(数学) 模式识别(心理学) 纹理(宇宙学) 物理 光学 功率(物理) 经济 量子力学 运营管理 语言学 哲学
作者
Jiayi Ma,Hao Zhang,Zhenfeng Shao,Pengwei Liang,Han Xu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:392
标识
DOI:10.1109/tim.2020.3038013
摘要

Visible images contain rich texture information, whereas infrared images have significant contrast. It is advantageous to combine these two kinds of information into a single image so that it not only has good contrast but also contains rich texture details. In general, previous fusion methods cannot achieve this goal well, where the fused results are inclined to either a visible or an infrared image. To address this challenge, a new fusion framework called generative adversarial network with multiclassification constraints (GANMcC) is proposed, which transforms image fusion into a multidistribution simultaneous estimation problem to fuse infrared and visible images in a more reasonable way. We adopt a generative adversarial network with multiclassification to estimate the distributions of visible light and infrared domains at the same time, in which the game of multiclassification discrimination will make the fused result to have these two distributions in a more balanced manner, so as to have significant contrast and rich texture details. In addition, we design a specific content loss to constrain the generator, which introduces the idea of main and auxiliary into the extraction of gradient and intensity information, which will enable the generator to extract more sufficient information from source images in a complementary manner. Extensive experiments demonstrate the advantages of our GANMcC over the state-of-the-art methods in terms of both qualitative effect and quantitative metric. Moreover, our method can achieve good fused results even the visible image is overexposed. Our code is publicly available at https://github.com/jiayi-ma/GANMcC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Criminology34应助科研通管家采纳,获得10
6秒前
HaCat应助科研通管家采纳,获得10
6秒前
HaCat应助科研通管家采纳,获得10
6秒前
兴奋的嚣完成签到 ,获得积分10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
HaCat应助科研通管家采纳,获得10
6秒前
HaCat应助科研通管家采纳,获得10
6秒前
嘻嘻哈哈应助科研通管家采纳,获得10
6秒前
嘻嘻哈哈应助科研通管家采纳,获得10
6秒前
HaCat应助科研通管家采纳,获得10
6秒前
嘻嘻哈哈应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
迷糊蛋完成签到,获得积分20
8秒前
可爱丹彤发布了新的文献求助30
11秒前
18秒前
SciGPT应助默默襄采纳,获得10
19秒前
21秒前
orixero应助雨之夏日采纳,获得10
22秒前
MiSD完成签到,获得积分10
26秒前
27秒前
一休完成签到,获得积分20
28秒前
科研通AI2S应助仁爱的狗采纳,获得10
28秒前
30秒前
上官若男应助名卡卡采纳,获得10
30秒前
33秒前
35秒前
一休发布了新的文献求助10
41秒前
雨之夏日发布了新的文献求助10
41秒前
42秒前
名卡卡发布了新的文献求助10
47秒前
飞快的奇异果完成签到 ,获得积分10
55秒前
甘草三七完成签到,获得积分10
59秒前
Kryptonite完成签到,获得积分10
1分钟前
大麦完成签到 ,获得积分10
1分钟前
Kevin完成签到 ,获得积分10
1分钟前
浮游应助耶耶粘豆包采纳,获得10
1分钟前
1分钟前
5k全完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302133
求助须知:如何正确求助?哪些是违规求助? 4449379
关于积分的说明 13848275
捐赠科研通 4335535
什么是DOI,文献DOI怎么找? 2380395
邀请新用户注册赠送积分活动 1375402
关于科研通互助平台的介绍 1341557