超级电容器
材料科学
储能
电容
阳极
纳米技术
功率密度
石墨烯
阴极
多孔性
氧化物
电化学
锰
金属有机骨架
电极
比表面积
比能量
电流密度
化学工程
复合材料
电气工程
化学
功率(物理)
冶金
催化作用
有机化学
吸附
物理化学
工程类
物理
生物化学
量子力学
作者
Pragati A. Shinde,Youngho Seo,Su-Chan Lee,Hansung Kim,Quang N. Pham,Yoonjin Won,Seong Chan Jun
标识
DOI:10.1016/j.cej.2019.122982
摘要
High capacitance, long cycling life, superior energy density, and ultrafast charge-discharge rates are some of the important characteristics for energy storage systems to meet the energy demands of modern electronics. The development of new emerging class of materials is necessary to rally these key requirements. Metal organic frameworks (MOFs) are generated tremendous interest as a new class of electrode materials for applications in energy storage owing to their large specific surface area, excellent porosity, composition and functionality. Herein, layered manganese-1, 4 benzenedicarboxylic acid-based MOFs [Mn(BDC).nDMF]n (Mn-MOFs) are fabricated using hydrothermal technique for supercapacitors application. The as-obtained Mn-MOF exhibits exceptionally high specific capacity (areal capacitance) of 567.5 mA h g−1 (10.25 F cm−2) at a current density of 1 A g−1. The hybrid supercapacitor fabricated with Mn-MOFs as a cathode and reduced graphene oxide (rGO) as an anode demonstrates specific and volumetric capacitances of 211.37 F g−1 and 3.32 F cm−3, respectively, specific energy of 66 Wh kg−1 at a specific power of 441 W kg−1, and capacity retention of 81.18% over 10,000 cycles. These excellent electrochemical results illustrate potential of utilizing MOF-based materials for supercapacitor application and provide innovative direction for the development of future high-performance energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI