有机太阳能电池
材料科学
纳米技术
光伏系统
开路电压
光电子学
能量转换效率
电压
电气工程
工程类
作者
Hafiz Bilal Naveed,Ke Zhou,Wei Ma
标识
DOI:10.1021/acs.accounts.9b00331
摘要
Organic solar cells (OSCs) have emerged as one promising sustainable energy resource since the introduction of state-of-the-art bulk heterojunction (BHJ) device structure in early 1990s. Impressively developed molecular design methodologies in the past decade have led researchers toward utilizing more suitable pairs of low (p-type) and high (n-type) electron affinity organic semiconducting materials. Among other attributes, versatile absorption capabilities of these materials highlight their favorable utilization in a single layer BHJ structure. Interaction of these verstile organic materials may lead to explicit interfaces, phase distributions, and crystalline nanostructures. Structural characterization techniques involving soft and hard X-rays have enabled us to measure these morphology parameters quantitatively including their string correlation with photovoltaic (PV) parameters. Favorable processing techniques have been adopted to realize auspicious interfacial areas and charge percolations in bulk toward efficient short circuit current (JSC) and fill factor (FF) values. Collaborative efforts in the fields of chemical structure design of materials, device characterization, and engineering have pushed the power conversion efficiencies (PCEs) of OSCs to 16%. However, the single layer BHJ structure still requires further optimizations for the extension of their PCEs toward the theoretical limit. Maximum utilization of solar energy by organic blend films is the key to match their potential with inorganic/perovskite solar cells. Having comparable JSC and FF values in organic versus inorganic photovoltaic devices, open circuit voltage (VOC) is the only PV parameter limiting the development of OSCs in comparison to their inorganic competitors. This is due to unfavorable competition between rates of charge generation and recombination. Loss of charges during these generation and recombination processes account for the energy loss of the device, ranging from 0.6 to 1.0 V in state-of-the-art OSCs. Highly efficient (14-16%) single layer BHJ devices usually suffer from high energy loss with VOC limited to 0.9 V. Comparatively, devices with reported VOC > 0.9 V suffer from poor JSC and FF values due to unfavorable interfacial ordering and bulk crystalline nanostructures. First part of the Account will address the charge losses during their transfer (interfacial losses) and influential role of interfacial nanostructures in controlling them toward efficient JSC and VOC values. Later, we will discuss losses during exciton diffusion and free charge transport (bulk losses) toward limited charge extraction. We will debate about the role of donor/acceptor nanostructures in correlation with influential photophysics studies to control these losses in small molecule (SM) acceptor based devices. We search for exaggerated crystalline phases of SM acceptor in competition with polymer donor to realize balanced and more efficient charge percolations. These improved diffusion and transport bulk nanostructures will suppress nonradiative (NR) pathways and bulk charge losses toward simultaneous enhancement of FF and VOC values. Favorable interfacial and bulk morphology will drive efficient diffusion, transfer, transport, and extraction of charges in organic blend films. This Account will guide chemists and engineers to optimize chemical structure design and blend film nanostructures toward suppressed energy loss of OSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI