Practical lithography hotspot identification using mask process model

热点(地质) 平版印刷术 光学接近校正 进程窗口 计算机科学 计算光刻 抵抗 炸薯条 临界尺寸 薄脆饼 多重图案 电子工程 计算机工程 工程类 纳米技术 电气工程 材料科学 光学 电信 地球物理学 地质学 物理 光电子学 图层(电子)
作者
Pai-Yen Chen,Chain Ting Huang,Shang Feng Weng,Yung-Chi Cheng,Young Rok Ham,Colbert Lu,Michael F. Green,Mohamed Fawzy Ramadan,Heng-Jen Lee,Chris Progler
标识
DOI:10.1117/12.2537935
摘要

Design weak points, or “hotspots” remain a leading issue in advanced lithography. These often lead to unexpected critical dimension (CD) behavior, degradation of process window and ultimately impact wafer yield. Industry technology development focus on hotspot detection has included full chip lithography simulation and machine learning-based hotspot analysis. Most recently, the machine learning approach is gaining attention because it is faster and more practical than lithography simulation-based hotspot detection. The machine learning case is a feedback approach based on previous known design hotspots. Conversely, the simulation method has the benefit of proactively detecting hotspots in a new design regardless of historical data. However, full chip simulation requires resources in calculating time, computing power and additional time-to-market that render it impractical in some scenarios. As design rules shrink, advanced mask designs have significantly increased in complexity due to Resolution Enhancement Techniques (RET) such as Source Mask Optimization (SMO), advanced Optical Proximity Correction (OPC) and high transmission attenuating mask films. This complicates hotspot detection by existing OPC verification tools or rigorous lithographic simulation with wafer resist model. These resultant complex mask geometries make OPC optimization and hotspot detection using post design very difficult. In this paper, we will demonstrate the limitation of traditional hotspot detection technology. Typical OPC tools use simple techniques such as single Gaussian approximations on the design, such as corner rounding, to take the mask process impact to the geometry into account. We will introduce a practical lithography hotspot identification method using mask process model. Mask model-based hotspot detection will be used to precisely identify lithography hotspots and will provide the information needed to improve hotspots’ lithographic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youyuguang完成签到,获得积分10
刚刚
1秒前
由哎完成签到,获得积分10
1秒前
小庄应助复杂煎饼采纳,获得10
2秒前
科研通AI5应助科研小白菜采纳,获得10
3秒前
迷路以筠发布了新的文献求助10
3秒前
3秒前
满意冷荷发布了新的文献求助10
4秒前
4秒前
Connor完成签到,获得积分10
6秒前
dengxu发布了新的文献求助10
7秒前
fionazhangdr发布了新的文献求助10
8秒前
就是我发布了新的文献求助10
8秒前
科研通AI5应助徐徐采纳,获得10
12秒前
小林太郎应助Anquan采纳,获得30
12秒前
微风轻起完成签到,获得积分10
14秒前
15秒前
15秒前
脑洞疼应助zsyzxb采纳,获得10
15秒前
15秒前
petli完成签到,获得积分10
16秒前
紧张的梦岚应助迷路以筠采纳,获得20
17秒前
17秒前
18秒前
科研通AI5应助MRCHONG采纳,获得10
18秒前
clean发布了新的文献求助10
19秒前
完美世界应助jayyin采纳,获得10
19秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
子夜应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
邓邓完成签到,获得积分10
21秒前
麻油球发布了新的文献求助10
21秒前
调研昵称发布了新的文献求助10
22秒前
22秒前
草莓公主bb完成签到,获得积分20
22秒前
Jasper应助忆楠采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849