Practical lithography hotspot identification using mask process model

热点(地质) 平版印刷术 光学接近校正 进程窗口 计算机科学 计算光刻 抵抗 炸薯条 临界尺寸 薄脆饼 多重图案 电子工程 计算机工程 工程类 纳米技术 电气工程 材料科学 光学 电信 物理 光电子学 图层(电子) 地球物理学 地质学
作者
Pai-Yen Chen,Chain Ting Huang,Shang Feng Weng,Yung-Chi Cheng,Young Rok Ham,Colbert Lu,Michael F. Green,Mohamed Fawzy Ramadan,Heng-Jen Lee,Chris Progler
标识
DOI:10.1117/12.2537935
摘要

Design weak points, or “hotspots” remain a leading issue in advanced lithography. These often lead to unexpected critical dimension (CD) behavior, degradation of process window and ultimately impact wafer yield. Industry technology development focus on hotspot detection has included full chip lithography simulation and machine learning-based hotspot analysis. Most recently, the machine learning approach is gaining attention because it is faster and more practical than lithography simulation-based hotspot detection. The machine learning case is a feedback approach based on previous known design hotspots. Conversely, the simulation method has the benefit of proactively detecting hotspots in a new design regardless of historical data. However, full chip simulation requires resources in calculating time, computing power and additional time-to-market that render it impractical in some scenarios. As design rules shrink, advanced mask designs have significantly increased in complexity due to Resolution Enhancement Techniques (RET) such as Source Mask Optimization (SMO), advanced Optical Proximity Correction (OPC) and high transmission attenuating mask films. This complicates hotspot detection by existing OPC verification tools or rigorous lithographic simulation with wafer resist model. These resultant complex mask geometries make OPC optimization and hotspot detection using post design very difficult. In this paper, we will demonstrate the limitation of traditional hotspot detection technology. Typical OPC tools use simple techniques such as single Gaussian approximations on the design, such as corner rounding, to take the mask process impact to the geometry into account. We will introduce a practical lithography hotspot identification method using mask process model. Mask model-based hotspot detection will be used to precisely identify lithography hotspots and will provide the information needed to improve hotspots’ lithographic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助winnie_5127采纳,获得10
刚刚
勇者义彦发布了新的文献求助10
刚刚
刚刚
1秒前
AN发布了新的文献求助10
1秒前
xhnmdl完成签到 ,获得积分10
2秒前
xc发布了新的文献求助10
3秒前
Nick_71应助卢君妍采纳,获得10
3秒前
JamesPei应助尘扬采纳,获得10
3秒前
共享精神应助zcs采纳,获得10
4秒前
Jay完成签到,获得积分10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
小蔡完成签到,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
上官若男应助AN采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得30
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
Sakura9235完成签到 ,获得积分10
6秒前
6秒前
咸鱼不翻身应助小米粥采纳,获得10
6秒前
7秒前
浮游应助KBRS采纳,获得10
7秒前
我是老大应助繁荣的夏烟采纳,获得10
8秒前
9秒前
平安只喜乐完成签到,获得积分10
9秒前
苹果不平完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470