已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Practical lithography hotspot identification using mask process model

热点(地质) 平版印刷术 光学接近校正 进程窗口 计算机科学 计算光刻 抵抗 炸薯条 临界尺寸 薄脆饼 多重图案 电子工程 计算机工程 工程类 纳米技术 电气工程 材料科学 光学 电信 地球物理学 地质学 物理 光电子学 图层(电子)
作者
Pai-Yen Chen,Chain Ting Huang,Shang Feng Weng,Yung-Chi Cheng,Young Rok Ham,Colbert Lu,Michael F. Green,Mohamed Fawzy Ramadan,Heng-Jen Lee,Chris Progler
标识
DOI:10.1117/12.2537935
摘要

Design weak points, or “hotspots” remain a leading issue in advanced lithography. These often lead to unexpected critical dimension (CD) behavior, degradation of process window and ultimately impact wafer yield. Industry technology development focus on hotspot detection has included full chip lithography simulation and machine learning-based hotspot analysis. Most recently, the machine learning approach is gaining attention because it is faster and more practical than lithography simulation-based hotspot detection. The machine learning case is a feedback approach based on previous known design hotspots. Conversely, the simulation method has the benefit of proactively detecting hotspots in a new design regardless of historical data. However, full chip simulation requires resources in calculating time, computing power and additional time-to-market that render it impractical in some scenarios. As design rules shrink, advanced mask designs have significantly increased in complexity due to Resolution Enhancement Techniques (RET) such as Source Mask Optimization (SMO), advanced Optical Proximity Correction (OPC) and high transmission attenuating mask films. This complicates hotspot detection by existing OPC verification tools or rigorous lithographic simulation with wafer resist model. These resultant complex mask geometries make OPC optimization and hotspot detection using post design very difficult. In this paper, we will demonstrate the limitation of traditional hotspot detection technology. Typical OPC tools use simple techniques such as single Gaussian approximations on the design, such as corner rounding, to take the mask process impact to the geometry into account. We will introduce a practical lithography hotspot identification method using mask process model. Mask model-based hotspot detection will be used to precisely identify lithography hotspots and will provide the information needed to improve hotspots’ lithographic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianshicanyi发布了新的文献求助10
2秒前
光亮白羊完成签到 ,获得积分10
3秒前
脑洞疼应助Antares采纳,获得10
5秒前
5秒前
陶醉的绮菱完成签到,获得积分10
8秒前
9秒前
Cwx2020完成签到,获得积分10
11秒前
11秒前
13秒前
14秒前
杰jj完成签到 ,获得积分10
14秒前
小黄发布了新的文献求助30
16秒前
zshjwk18完成签到,获得积分10
17秒前
17秒前
Dollar完成签到 ,获得积分0
18秒前
顾矜应助科研通管家采纳,获得10
19秒前
HEIKU应助科研通管家采纳,获得10
19秒前
HEIKU应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
HEIKU应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
19秒前
华仔应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得30
19秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
Steven发布了新的文献求助10
20秒前
吴咪完成签到,获得积分10
23秒前
李力完成签到 ,获得积分10
23秒前
24秒前
周子航发布了新的文献求助10
29秒前
29秒前
s654231完成签到,获得积分10
32秒前
俭朴听南发布了新的文献求助10
39秒前
科研通AI2S应助A宇采纳,获得10
42秒前
45秒前
46秒前
46秒前
49秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125790
求助须知:如何正确求助?哪些是违规求助? 2776133
关于积分的说明 7729211
捐赠科研通 2431530
什么是DOI,文献DOI怎么找? 1292140
科研通“疑难数据库(出版商)”最低求助积分说明 622407
版权声明 600380