Practical lithography hotspot identification using mask process model

热点(地质) 平版印刷术 光学接近校正 进程窗口 计算机科学 计算光刻 抵抗 炸薯条 临界尺寸 薄脆饼 多重图案 电子工程 计算机工程 工程类 纳米技术 电气工程 材料科学 光学 电信 物理 光电子学 图层(电子) 地球物理学 地质学
作者
Pai-Yen Chen,Chain Ting Huang,Shang Feng Weng,Yung-Chi Cheng,Young Rok Ham,Colbert Lu,Michael F. Green,Mohamed Fawzy Ramadan,Heng-Jen Lee,Chris Progler
标识
DOI:10.1117/12.2537935
摘要

Design weak points, or “hotspots” remain a leading issue in advanced lithography. These often lead to unexpected critical dimension (CD) behavior, degradation of process window and ultimately impact wafer yield. Industry technology development focus on hotspot detection has included full chip lithography simulation and machine learning-based hotspot analysis. Most recently, the machine learning approach is gaining attention because it is faster and more practical than lithography simulation-based hotspot detection. The machine learning case is a feedback approach based on previous known design hotspots. Conversely, the simulation method has the benefit of proactively detecting hotspots in a new design regardless of historical data. However, full chip simulation requires resources in calculating time, computing power and additional time-to-market that render it impractical in some scenarios. As design rules shrink, advanced mask designs have significantly increased in complexity due to Resolution Enhancement Techniques (RET) such as Source Mask Optimization (SMO), advanced Optical Proximity Correction (OPC) and high transmission attenuating mask films. This complicates hotspot detection by existing OPC verification tools or rigorous lithographic simulation with wafer resist model. These resultant complex mask geometries make OPC optimization and hotspot detection using post design very difficult. In this paper, we will demonstrate the limitation of traditional hotspot detection technology. Typical OPC tools use simple techniques such as single Gaussian approximations on the design, such as corner rounding, to take the mask process impact to the geometry into account. We will introduce a practical lithography hotspot identification method using mask process model. Mask model-based hotspot detection will be used to precisely identify lithography hotspots and will provide the information needed to improve hotspots’ lithographic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的面包完成签到,获得积分20
刚刚
科研通AI6应助zz采纳,获得10
刚刚
刚刚
刚刚
Song发布了新的文献求助10
1秒前
找文献呢发布了新的文献求助10
1秒前
嘿嘿发布了新的文献求助10
2秒前
廷烨完成签到,获得积分10
2秒前
2秒前
HMM完成签到,获得积分10
3秒前
3秒前
3秒前
Wangyan完成签到 ,获得积分10
3秒前
bgistone完成签到,获得积分10
3秒前
zz完成签到,获得积分10
4秒前
蔡继海发布了新的文献求助10
5秒前
我爱看文献完成签到,获得积分10
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
angel发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
美好斓发布了新的文献求助10
9秒前
唐daytoy1005完成签到,获得积分10
9秒前
汉堡包应助阿慧采纳,获得10
10秒前
11秒前
柠檬不萌完成签到,获得积分20
12秒前
12秒前
123完成签到,获得积分10
13秒前
郑雨霏发布了新的文献求助10
13秒前
Mmmmmmm发布了新的文献求助10
14秒前
星辰大海应助hhh采纳,获得10
14秒前
14秒前
14秒前
tjxx发布了新的文献求助10
14秒前
共享精神应助Caroline采纳,获得10
14秒前
14秒前
要减肥的镜子完成签到,获得积分10
14秒前
Ava应助鳎mu采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569810
求助须知:如何正确求助?哪些是违规求助? 4655144
关于积分的说明 14710842
捐赠科研通 4596139
什么是DOI,文献DOI怎么找? 2522284
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464032