Application of Machine Learning Techniques to Predict Binding Affinity for Drug Targets: A Study of Cyclin-Dependent Kinase 2

机器学习 人工智能 虚拟筛选 计算机科学 二元分类 药物发现 计算生物学 支持向量机 细胞周期蛋白依赖激酶 细胞周期蛋白依赖激酶2 对接(动物) 化学 激酶 蛋白激酶A 生物 生物化学 细胞 护理部 医学 细胞周期
作者
Gabriela Bitencourt‐Ferreira,Amauri Duarte da Silva,Walter Filgueira de Azevedo
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:28 (2): 253-265 被引量:28
标识
DOI:10.2174/2213275912666191102162959
摘要

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羽生结弦的馨馨完成签到,获得积分10
2秒前
2秒前
liuyuankai完成签到,获得积分10
2秒前
112233完成签到,获得积分10
3秒前
脑洞疼应助吃猫的鱼采纳,获得10
3秒前
5秒前
5秒前
5秒前
典雅的静完成签到,获得积分10
6秒前
6秒前
6秒前
liz发布了新的文献求助30
7秒前
秀xiu完成签到,获得积分10
7秒前
科研通AI2S应助哆哆采纳,获得10
7秒前
土豆侠发布了新的文献求助10
7秒前
7秒前
vn完成签到,获得积分10
8秒前
茯苓完成签到,获得积分10
8秒前
丘比特应助稳重的秋天采纳,获得10
8秒前
9秒前
闪闪凝梦完成签到 ,获得积分10
9秒前
果子发布了新的文献求助10
9秒前
10秒前
10秒前
Tao完成签到,获得积分10
10秒前
ding应助DJHKFD采纳,获得10
10秒前
丰富的乐儿完成签到,获得积分10
11秒前
白桃汽水发布了新的文献求助10
11秒前
changlinJ完成签到,获得积分10
12秒前
12秒前
迪琛完成签到,获得积分10
13秒前
我是鸡汤完成签到,获得积分10
13秒前
14秒前
桃核完成签到,获得积分20
15秒前
JamesPei应助不败皇族461X采纳,获得10
15秒前
orixero应助喵喵盖被采纳,获得10
15秒前
哈哈哈完成签到,获得积分10
16秒前
hhh2018687发布了新的文献求助10
16秒前
jxg发布了新的文献求助10
17秒前
NexusExplorer应助橘子采纳,获得10
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262227
求助须知:如何正确求助?哪些是违规求助? 2902902
关于积分的说明 8323113
捐赠科研通 2572880
什么是DOI,文献DOI怎么找? 1397940
科研通“疑难数据库(出版商)”最低求助积分说明 653941
邀请新用户注册赠送积分活动 632516