Hybrid Clinical-Radiomics Model for Precisely Predicting the Invasiveness of Lung Adenocarcinoma Manifesting as Pure Ground-Glass Nodule

无线电技术 腺癌 放射科 医学 结核(地质) 材料科学 病理 地质学 内科学 癌症 古生物学
作者
Lan Song,Tongtong Xing,Zhenchen Zhu,Wei Han,Guangda Fan,Ji Li,Huayang Du,Wei Song,Zhengyu Jin,Guanglei Zhang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (9): e267-e277 被引量:15
标识
DOI:10.1016/j.acra.2020.05.004
摘要

To identify whether the radiomics features of computed tomography (CT) allowed for the preoperative discrimination of the invasiveness of lung adenocarcinomas manifesting as pure ground-glass nodules (pGGNs) and further to develop and compare different predictive models.We retrospectively included 187 lung adenocarcinomas presenting as pGGNs (66 preinvasive lesions and 121 invasive lesions), which were randomly divided into the training and test sets (8:2). Radiomics features were extracted from non-enhanced CT images. Clinical features, including patient's demographic characteristics, smoking status, and conventional CT features that reflect tumor's morphology and surrounding information were also collected. Intraclass correlation coefficient and ℓ2.1-norm minimization were used to identify influential feature subset which was then used to build three predictive models (clinical, radiomics, and clinical-radiomics models) with the gradient boosting regression tree classifier. The performances of the predictive models were evaluated using the area under the curve (AUC).Of the 1409 radiomics features and 27 clinical feature subtypes, 102 features were selected to construct the hybrid clinical-radiomics model, which achieved the best discriminative power (AUC = 0.934 and 0.929 in training and test set). The radiomics model showed comparable predictive performance (AUC = 0.911 and 0.901 in training and test set) compared to the clinical model (AUC = 0.911 and 0.894 in training and test set).The radiomics model showed good predictive performance in discriminating invasive lesions from preinvasive lesions for lung adenocarcinomas presenting as pGGNs. Its performance can be further improved by adding clinical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞哥发布了新的文献求助10
1秒前
cencen完成签到 ,获得积分10
3秒前
5秒前
12秒前
12秒前
zero1832发布了新的文献求助10
12秒前
充电宝z完成签到,获得积分10
14秒前
平常平松发布了新的文献求助10
18秒前
18秒前
21秒前
芝芝椰奶冻完成签到 ,获得积分10
25秒前
Dsunflower完成签到 ,获得积分10
25秒前
自觉的向日葵完成签到,获得积分10
26秒前
树叶有专攻完成签到,获得积分10
29秒前
29秒前
郑雨霏完成签到,获得积分10
30秒前
茉莉园完成签到,获得积分10
32秒前
ProfCTS发布了新的文献求助10
32秒前
一只大憨憨猫完成签到,获得积分10
33秒前
旧旧发布了新的文献求助10
34秒前
CTS完成签到,获得积分10
38秒前
38秒前
科目三应助一一采纳,获得10
42秒前
鱼鱼鱼发布了新的文献求助10
43秒前
彩色夜阑完成签到,获得积分10
44秒前
飞哥完成签到 ,获得积分10
46秒前
51秒前
不秃头完成签到,获得积分10
53秒前
56秒前
meng发布了新的文献求助10
57秒前
赘婿应助样子采纳,获得10
59秒前
勤劳泽洋发布了新的文献求助20
59秒前
彭于晏应助Rita采纳,获得10
1分钟前
1分钟前
所所应助meng采纳,获得10
1分钟前
爱刷牙的小熊完成签到 ,获得积分10
1分钟前
1分钟前
cencen关注了科研通微信公众号
1分钟前
1分钟前
Fannia发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775525
求助须知:如何正确求助?哪些是违规求助? 3321190
关于积分的说明 10203825
捐赠科研通 3036017
什么是DOI,文献DOI怎么找? 1665907
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766