Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm

超声波 卷积神经网络 人工智能 卡帕 算法 置信区间 医学 机器学习 肺超声 计算机科学 深度学习 直线(几何图形) 放射科 内科学 数学 几何学
作者
Cristiana Baloescu,Grzegorz Toporek,Seungsoo Kim,Katelyn McNamara,Rachel Liu,Melissa Shaw,Robert L. McNamara,Balasundar I. Raju,Christopher L. Moore
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (11): 2312-2320 被引量:107
标识
DOI:10.1109/tuffc.2020.3002249
摘要

Shortness of breath is a major reason that patients present to the emergency department (ED) and point-of-care ultrasound (POCUS) has been shown to aid in diagnosis, particularly through evaluation for artifacts known as B-lines. B-line identification and quantification can be a challenging skill for novice ultrasound users, and experienced users could benefit from a more objective measure of quantification. We sought to develop and test a deep learning (DL) algorithm to quantify the assessment of B-lines in lung ultrasound. We utilized ultrasound clips (n = 400) from an existing database of ED patients to provide training and test sets to develop and test the DL algorithm based on deep convolutional neural networks. Interpretations of the images by algorithm were compared to expert human interpretations on binary and severity (a scale of 0- 4) classifications. Our model yielded a sensitivity of 93% (95% confidence interval (CI) 81%-98%) and a specificity of 96% (95% CI 84%-99%) for the presence or absence of B-lines compared to expert read, with a kappa of 0.88 (95% CI 0.79-0.97). Model to expert agreement for severity classificationyielded a weighted kappa of 0.65(95% CI 0.56- 074). Overall, the DL algorithm performed well and could be integrated into an ultrasound system in order to help diagnose and track B-line severity. The algorithm is better at distinguishing the presence from the absence of B-lines but can also be successfully used to distinguish between B-line severity. Such methods could decrease variabilityand provide a standardized method for improved diagnosis and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的安白完成签到,获得积分10
1秒前
2秒前
邓可新完成签到,获得积分10
2秒前
空城完成签到,获得积分10
2秒前
3秒前
研友_5Z4ZA5完成签到,获得积分10
4秒前
5秒前
小二郎应助zhongjr_hz采纳,获得10
5秒前
浮光完成签到,获得积分10
5秒前
Titi完成签到 ,获得积分10
6秒前
caop完成签到,获得积分10
7秒前
7秒前
Lvy完成签到,获得积分10
7秒前
xliiii完成签到,获得积分10
7秒前
英仙座发布了新的文献求助20
8秒前
机智的孤兰完成签到 ,获得积分10
8秒前
8秒前
LLLLL完成签到,获得积分10
8秒前
hobowei完成签到 ,获得积分10
8秒前
mdbbs2021完成签到,获得积分10
10秒前
WTTTTTFFFFFF发布了新的文献求助10
10秒前
唔呜無完成签到 ,获得积分10
10秒前
jiajia发布了新的文献求助10
11秒前
易燃物品完成签到,获得积分10
11秒前
Hina完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
li完成签到,获得积分10
12秒前
123完成签到,获得积分10
12秒前
贱小贱完成签到,获得积分10
12秒前
鱼儿完成签到,获得积分10
13秒前
asdfqwer应助luwenxuan采纳,获得10
14秒前
ttc完成签到,获得积分10
15秒前
英仙座完成签到,获得积分10
16秒前
鹿叽叽完成签到,获得积分10
16秒前
humaning完成签到,获得积分10
16秒前
agnway发布了新的文献求助10
16秒前
16秒前
WTTTTTFFFFFF完成签到,获得积分10
16秒前
请叫我风吹麦浪应助刘兴采纳,获得10
16秒前
HongJiang完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027