Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm

超声波 卷积神经网络 人工智能 卡帕 算法 置信区间 医学 机器学习 肺超声 计算机科学 深度学习 直线(几何图形) 放射科 内科学 数学 几何学
作者
Cristiana Baloescu,Grzegorz Toporek,Seungsoo Kim,Katelyn McNamara,Rachel Liu,Melissa Shaw,Robert L. McNamara,Balasundar I. Raju,Christopher L. Moore
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (11): 2312-2320 被引量:107
标识
DOI:10.1109/tuffc.2020.3002249
摘要

Shortness of breath is a major reason that patients present to the emergency department (ED) and point-of-care ultrasound (POCUS) has been shown to aid in diagnosis, particularly through evaluation for artifacts known as B-lines. B-line identification and quantification can be a challenging skill for novice ultrasound users, and experienced users could benefit from a more objective measure of quantification. We sought to develop and test a deep learning (DL) algorithm to quantify the assessment of B-lines in lung ultrasound. We utilized ultrasound clips (n = 400) from an existing database of ED patients to provide training and test sets to develop and test the DL algorithm based on deep convolutional neural networks. Interpretations of the images by algorithm were compared to expert human interpretations on binary and severity (a scale of 0- 4) classifications. Our model yielded a sensitivity of 93% (95% confidence interval (CI) 81%-98%) and a specificity of 96% (95% CI 84%-99%) for the presence or absence of B-lines compared to expert read, with a kappa of 0.88 (95% CI 0.79-0.97). Model to expert agreement for severity classificationyielded a weighted kappa of 0.65(95% CI 0.56- 074). Overall, the DL algorithm performed well and could be integrated into an ultrasound system in order to help diagnose and track B-line severity. The algorithm is better at distinguishing the presence from the absence of B-lines but can also be successfully used to distinguish between B-line severity. Such methods could decrease variabilityand provide a standardized method for improved diagnosis and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助charon采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
可爱的函函应助娜行采纳,获得10
1秒前
鱼圆杂铺完成签到 ,获得积分10
1秒前
Danielle完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
呆呆发布了新的文献求助10
2秒前
只只完成签到,获得积分20
2秒前
WNL发布了新的文献求助10
3秒前
彭珊完成签到,获得积分10
3秒前
Rocky发布了新的文献求助10
3秒前
Charon922完成签到,获得积分10
3秒前
3秒前
酒尚温发布了新的文献求助50
3秒前
3秒前
科目三应助黑米粥采纳,获得10
4秒前
共享精神应助AnasYusuf采纳,获得10
4秒前
4秒前
嘟嘟金子完成签到,获得积分10
4秒前
wyh发布了新的文献求助10
4秒前
好了发布了新的文献求助10
4秒前
善良的远锋完成签到,获得积分10
4秒前
愉快的冰珍完成签到 ,获得积分20
5秒前
个木完成签到,获得积分20
5秒前
一平发布了新的文献求助10
6秒前
6秒前
乐观期待发布了新的文献求助30
6秒前
小蘑菇应助Ricardo采纳,获得10
6秒前
抓恐龙发布了新的文献求助10
6秒前
7秒前
123完成签到,获得积分20
7秒前
8秒前
合适的半青应助靓丽涵易采纳,获得10
8秒前
xuan完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678