Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm

超声波 卷积神经网络 人工智能 卡帕 算法 置信区间 医学 机器学习 肺超声 计算机科学 深度学习 直线(几何图形) 放射科 内科学 数学 几何学
作者
Cristiana Baloescu,Grzegorz Toporek,Seungsoo Kim,Katelyn McNamara,Rachel Liu,Melissa Shaw,Robert L. McNamara,Balasundar I. Raju,Christopher L. Moore
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (11): 2312-2320 被引量:107
标识
DOI:10.1109/tuffc.2020.3002249
摘要

Shortness of breath is a major reason that patients present to the emergency department (ED) and point-of-care ultrasound (POCUS) has been shown to aid in diagnosis, particularly through evaluation for artifacts known as B-lines. B-line identification and quantification can be a challenging skill for novice ultrasound users, and experienced users could benefit from a more objective measure of quantification. We sought to develop and test a deep learning (DL) algorithm to quantify the assessment of B-lines in lung ultrasound. We utilized ultrasound clips (n = 400) from an existing database of ED patients to provide training and test sets to develop and test the DL algorithm based on deep convolutional neural networks. Interpretations of the images by algorithm were compared to expert human interpretations on binary and severity (a scale of 0- 4) classifications. Our model yielded a sensitivity of 93% (95% confidence interval (CI) 81%-98%) and a specificity of 96% (95% CI 84%-99%) for the presence or absence of B-lines compared to expert read, with a kappa of 0.88 (95% CI 0.79-0.97). Model to expert agreement for severity classificationyielded a weighted kappa of 0.65(95% CI 0.56- 074). Overall, the DL algorithm performed well and could be integrated into an ultrasound system in order to help diagnose and track B-line severity. The algorithm is better at distinguishing the presence from the absence of B-lines but can also be successfully used to distinguish between B-line severity. Such methods could decrease variabilityand provide a standardized method for improved diagnosis and outcome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2t发布了新的文献求助30
刚刚
黄紫红蓝发布了新的文献求助10
刚刚
稳重雁易完成签到 ,获得积分10
刚刚
1秒前
洛苏完成签到,获得积分10
2秒前
2秒前
Judson完成签到 ,获得积分10
2秒前
时尚战斗机完成签到,获得积分10
2秒前
思源应助chun123采纳,获得10
2秒前
严冥幽完成签到 ,获得积分10
4秒前
庆庆完成签到 ,获得积分10
4秒前
4秒前
4秒前
斯利美尔发布了新的文献求助10
5秒前
zd发布了新的文献求助10
5秒前
铁甲小宝发布了新的文献求助10
6秒前
LHH发布了新的文献求助10
6秒前
清脆平凡完成签到,获得积分10
7秒前
summer完成签到,获得积分0
7秒前
tingxiaomei完成签到,获得积分10
7秒前
XL发布了新的文献求助10
8秒前
月上半山发布了新的文献求助10
8秒前
8秒前
exile完成签到,获得积分10
8秒前
勤奋太君完成签到,获得积分10
8秒前
郭慢慢发布了新的文献求助10
8秒前
9秒前
阿翔发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助20
9秒前
学术女战士完成签到,获得积分10
9秒前
淡淡的雪完成签到,获得积分10
10秒前
10秒前
10秒前
zgrmws应助外向小猫咪采纳,获得10
10秒前
10秒前
11秒前
xubobo完成签到,获得积分10
11秒前
华仔应助花开不败采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997