A network-based scan statistic for detecting the exact location and extent of hotspots along urban streets

统计的 计算机科学 扫描统计信息 欧几里德距离 热点(地质) 数据挖掘 集合(抽象数据类型) 统计 人工智能 数学 地球物理学 地质学 程序设计语言
作者
Shino Shiode,Narushige Shiode
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:83: 101500-101500 被引量:17
标识
DOI:10.1016/j.compenvurbsys.2020.101500
摘要

Socio-economic activities and incidents such as crimes and traffic accidents have a negative impact on our society, and their reduction has been a priority in our social-science endeavour. These events are not uniform in their occurrences but, rather, manifest a distinct set of concentrations, commonly known as hotspots. Detecting the exact extent, shape and changes in these hotspots can lead to deeper understanding of their cause and help reduce the volume of incidents, yet accuracy of the analytical outcomes using existing methods are often hampered by their reliance on Euclidean distance. This paper proposes a new type of cluster detection method for identifying significant concentration of urban and social-science activities recorded at the individual street-address level. It extends Scan Statistic—a regular hotspot detection method originally developed in the field of epidemiology—by introducing flexible search windows that adapt to and sweep across a street network. Using a set of synthetic data of crime incidents as an example, performance of the proposed method is measured against that of its conventional counterparts. Results from the performance tests confirm that the proposed method is more accurate in detecting the exact locations of hotspots without over- or under-representing them, thus offering an effective means to identify problem places at the individual street-address level. The simulation also demonstrates how well the proposed method captures changes in the intensity of hotspots, which is also something existing methods have struggled with. An empirical analysis is carried out with data on drug, burglary, robbery, as well as thefts from vehicles in Chicago. The study demonstrates the capacity of the proposed method to extract the detailed profile of the concentration of each crime type, which offers interesting insights into their micro-scale patterns which were previously not available at such a fine spatial granularity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenyq1177完成签到 ,获得积分10
刚刚
哦豁拐咯完成签到,获得积分10
1秒前
毕业大吉完成签到,获得积分20
1秒前
糖丸完成签到,获得积分10
1秒前
颖仔完成签到,获得积分10
2秒前
doin完成签到,获得积分10
2秒前
发一篇sci完成签到 ,获得积分10
2秒前
老实皮皮虾完成签到,获得积分10
3秒前
慕青应助石头采纳,获得10
4秒前
Kins完成签到,获得积分10
4秒前
清浅发布了新的文献求助20
4秒前
王五发布了新的文献求助10
4秒前
康康米其林完成签到,获得积分10
5秒前
5秒前
王小海111完成签到 ,获得积分10
5秒前
6秒前
A阿澍完成签到,获得积分10
6秒前
淡淡凌翠完成签到,获得积分10
6秒前
科研通AI2S应助FLZLC采纳,获得10
7秒前
anthea完成签到 ,获得积分10
7秒前
元气糖完成签到 ,获得积分10
7秒前
7秒前
8秒前
Sky完成签到,获得积分10
8秒前
8秒前
LL666完成签到 ,获得积分10
9秒前
9秒前
10秒前
顿立男完成签到,获得积分20
10秒前
xz完成签到 ,获得积分10
10秒前
11秒前
草莓味的榴莲完成签到,获得积分10
12秒前
儒雅的蜜粉完成签到,获得积分10
12秒前
小马甲应助chuyinweilai采纳,获得10
12秒前
mzhmhy发布了新的文献求助10
12秒前
缥缈冷安完成签到,获得积分10
13秒前
13秒前
丰富的小甜瓜完成签到,获得积分10
13秒前
星云完成签到 ,获得积分20
13秒前
怡然云朵发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118