Artificial Intelligence in Health Care: Bibliometric Analysis

医疗保健 人工智能 文献计量学 计算机科学 卷积神经网络 数据科学 医学 数据挖掘 政治学 法学
作者
Yuqi Guo,Zhichao Hao,Shichong Zhao,Jiaqi Gong,Fan Yang
出处
期刊:Journal of Medical Internet Research 卷期号:22 (7): e18228-e18228 被引量:224
标识
DOI:10.2196/18228
摘要

Background As a critical driving power to promote health care, the health care–related artificial intelligence (AI) literature is growing rapidly. Objective The purpose of this analysis is to provide a dynamic and longitudinal bibliometric analysis of health care–related AI publications. Methods The Web of Science (Clarivate PLC) was searched to retrieve all existing and highly cited AI-related health care research papers published in English up to December 2019. Based on bibliometric indicators, a search strategy was developed to screen the title for eligibility, using the abstract and full text where needed. The growth rate of publications, characteristics of research activities, publication patterns, and research hotspot tendencies were computed using the HistCite software. Results The search identified 5235 hits, of which 1473 publications were included in the analyses. Publication output increased an average of 17.02% per year since 1995, but the growth rate of research papers significantly increased to 45.15% from 2014 to 2019. The major health problems studied in AI research are cancer, depression, Alzheimer disease, heart failure, and diabetes. Artificial neural networks, support vector machines, and convolutional neural networks have the highest impact on health care. Nucleosides, convolutional neural networks, and tumor markers have remained research hotspots through 2019. Conclusions This analysis provides a comprehensive overview of the AI-related research conducted in the field of health care, which helps researchers, policy makers, and practitioners better understand the development of health care–related AI research and possible practice implications. Future AI research should be dedicated to filling in the gaps between AI health care research and clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓奶冻发布了新的文献求助10
1秒前
烟花应助完美丹南采纳,获得10
1秒前
ds发布了新的文献求助10
1秒前
呜啦啦啦发布了新的文献求助10
2秒前
3秒前
大力的契完成签到,获得积分10
3秒前
3秒前
3秒前
kkkkkkkkkkey发布了新的文献求助10
4秒前
4秒前
岳莹晓完成签到 ,获得积分10
5秒前
Nathan完成签到,获得积分0
5秒前
完美的天空应助李倩采纳,获得10
6秒前
6秒前
ds完成签到,获得积分10
6秒前
陈老太完成签到 ,获得积分10
7秒前
糊涂的尔蝶完成签到,获得积分10
7秒前
orixero应助慈祥的翠桃采纳,获得10
7秒前
NexusExplorer应助慈祥的翠桃采纳,获得10
7秒前
Orange应助慈祥的翠桃采纳,获得10
7秒前
我是老大应助慈祥的翠桃采纳,获得10
7秒前
丘比特应助慈祥的翠桃采纳,获得10
7秒前
乐乐应助慈祥的翠桃采纳,获得10
8秒前
NexusExplorer应助慈祥的翠桃采纳,获得10
8秒前
科目三应助慈祥的翠桃采纳,获得10
8秒前
方赫然应助慈祥的翠桃采纳,获得10
8秒前
方赫然应助慈祥的翠桃采纳,获得10
8秒前
8秒前
慕青应助蟹蟹采纳,获得10
9秒前
9秒前
9秒前
草莓奶冻完成签到,获得积分10
10秒前
10秒前
10秒前
李倩完成签到,获得积分10
11秒前
斯文败类应助Sor采纳,获得10
11秒前
王京文发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239297
求助须知:如何正确求助?哪些是违规求助? 2884668
关于积分的说明 8234537
捐赠科研通 2552834
什么是DOI,文献DOI怎么找? 1380958
科研通“疑难数据库(出版商)”最低求助积分说明 649132
邀请新用户注册赠送积分活动 624834