亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Despeckling of clinical ultrasound images using deep residual learning

残余物 人工智能 计算机科学 深度学习 超声波 放射科 计算机视觉 模式识别(心理学) 医学物理学 医学 算法
作者
Priyanka Kokil,S Sudharson
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:194: 105477-105477 被引量:48
标识
DOI:10.1016/j.cmpb.2020.105477
摘要

Abstract Background and objective Ultrasound is the non-radioactive imaging modality used in the diagnosis of various diseases related to the internal organs of the body. The presence of speckle noise in ultrasound image (UI) is inevitable and may affect resolution and contrast of the image. Existence of the speckle noise degrades the visual evaluation of the image. The despeckling of UI is a desirable pre-processing step in computer-aided UI based diagnosis systems. Methods This paper proposes a novel method for despeckling UIs using pre-trained residual learning network (RLN). Initially, RLN is trained with pristine and its corresponding noisy images in order to achieve a better performance. The developed method chooses a pre-trained RLN for despeckling UIs with less computational resources. But the training procedure of RLN from scratch is computationally demanding. The pre-trained RLN is a blind despeckling approach and does not require any fine tuning and noise level estimation. The presented approach shows superiority in the removal of speckle noise as compared to the existing state-of-art methods. Results To highlight the effectiveness of the proposed method the pristine images from the Waterloo dataset has been considered. The proposed pre-trained RLN based UI despeckling method resulted in a better peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) at different speckle noise levels. The no-reference image quality approach is adopted to ensure robustness of the established method for real time UI. From results it is obvious that, the performance of the proposed method is superior than the existing methods in terms of naturalness image quality evaluator (NIQE). Conclusions From the experimental results, it is clear that the proposed method outperforms the existing despeckling methods in terms of both artificially added and naturally occurring speckle images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯嗯哦哦哦完成签到 ,获得积分10
2秒前
3秒前
11秒前
24秒前
42秒前
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
贝儿发布了新的文献求助10
1分钟前
大模型应助贝儿采纳,获得10
1分钟前
矮小的珠发布了新的文献求助10
1分钟前
小二郎应助矮小的珠采纳,获得10
2分钟前
2分钟前
阿超完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
maria_takayama完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
通科研完成签到 ,获得积分10
2分钟前
下雨天爱吃鱼完成签到,获得积分10
3分钟前
脑洞疼应助evil采纳,获得10
3分钟前
cc应助科研通管家采纳,获得10
3分钟前
开心的瘦子完成签到,获得积分10
3分钟前
乐观无心完成签到,获得积分10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
123发布了新的文献求助10
5分钟前
5分钟前
5分钟前
123完成签到,获得积分20
5分钟前
gyx完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264