Despeckling of clinical ultrasound images using deep residual learning

残余物 人工智能 计算机科学 深度学习 超声波 放射科 计算机视觉 模式识别(心理学) 医学物理学 医学 算法
作者
Priyanka Kokil,S Sudharson
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:194: 105477-105477 被引量:36
标识
DOI:10.1016/j.cmpb.2020.105477
摘要

Abstract Background and objective Ultrasound is the non-radioactive imaging modality used in the diagnosis of various diseases related to the internal organs of the body. The presence of speckle noise in ultrasound image (UI) is inevitable and may affect resolution and contrast of the image. Existence of the speckle noise degrades the visual evaluation of the image. The despeckling of UI is a desirable pre-processing step in computer-aided UI based diagnosis systems. Methods This paper proposes a novel method for despeckling UIs using pre-trained residual learning network (RLN). Initially, RLN is trained with pristine and its corresponding noisy images in order to achieve a better performance. The developed method chooses a pre-trained RLN for despeckling UIs with less computational resources. But the training procedure of RLN from scratch is computationally demanding. The pre-trained RLN is a blind despeckling approach and does not require any fine tuning and noise level estimation. The presented approach shows superiority in the removal of speckle noise as compared to the existing state-of-art methods. Results To highlight the effectiveness of the proposed method the pristine images from the Waterloo dataset has been considered. The proposed pre-trained RLN based UI despeckling method resulted in a better peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) at different speckle noise levels. The no-reference image quality approach is adopted to ensure robustness of the established method for real time UI. From results it is obvious that, the performance of the proposed method is superior than the existing methods in terms of naturalness image quality evaluator (NIQE). Conclusions From the experimental results, it is clear that the proposed method outperforms the existing despeckling methods in terms of both artificially added and naturally occurring speckle images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助受伤自行车采纳,获得10
1秒前
筱静完成签到 ,获得积分10
1秒前
1秒前
小刘效果顺利毕业完成签到,获得积分20
1秒前
3秒前
1huiqina发布了新的文献求助10
3秒前
大模型应助yanyimeng采纳,获得10
4秒前
5秒前
variant完成签到,获得积分10
7秒前
句号发布了新的文献求助10
7秒前
YY发布了新的文献求助10
9秒前
9秒前
Jayce完成签到,获得积分10
10秒前
10秒前
211完成签到 ,获得积分10
12秒前
12秒前
思源应助topsun采纳,获得10
12秒前
12秒前
13秒前
乐乐应助微斯人采纳,获得10
13秒前
Miyya完成签到 ,获得积分10
13秒前
Foremelon发布了新的文献求助10
13秒前
13秒前
13秒前
东方欲晓完成签到 ,获得积分0
13秒前
英俊的铭应助无望采纳,获得10
14秒前
Mint发布了新的文献求助10
14秒前
15秒前
阳佟初兰发布了新的文献求助10
15秒前
16秒前
张琦完成签到 ,获得积分10
16秒前
16秒前
桜棠完成签到,获得积分20
16秒前
16秒前
黑祎菲关注了科研通微信公众号
17秒前
199898发布了新的文献求助10
17秒前
axl发布了新的文献求助10
17秒前
惜墨给Jun的求助进行了留言
18秒前
18秒前
大翟完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156450
求助须知:如何正确求助?哪些是违规求助? 2807921
关于积分的说明 7875266
捐赠科研通 2466226
什么是DOI,文献DOI怎么找? 1312727
科研通“疑难数据库(出版商)”最低求助积分说明 630255
版权声明 601919