材料科学
膜
共价有机骨架
电导率
湿度
成核
溶剂
质子输运
水溶液
质子交换膜燃料电池
制作
相对湿度
化学工程
质子
复合材料
纳米技术
有机化学
物理化学
热力学
多孔性
化学
量子力学
病理
生物化学
替代医学
医学
工程类
物理
作者
Li Cao,Hong Wu,Yuliang Cao,Chunyang Fan,Rui Zhao,Xueyi He,Pengfei Yang,Benbing Shi,Xinda You,Zhongyi Jiang
标识
DOI:10.1002/adma.202005565
摘要
Abstract State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm −2 at 35% RH and 80 ° C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI