On dynamic mode decomposition: Theory and applications

动态模态分解 计算机科学 非线性系统 矩阵的特征分解 实现(概率) 系列(地层学) 秩(图论) 应用数学 一致性(知识库) 动力系统理论 算法 理论计算机科学 数学优化 特征向量 数学 人工智能 机器学习 统计 组合数学 物理 生物 古生物学 量子力学
作者
Jonathan H. Tu,Clarence W. Rowley,Dirk M. Luchtenburg,Steven L. Brunton,J. Nathan Kutz
出处
期刊:Journal of computational dynamics [American Institute of Mathematical Sciences]
卷期号:1 (2): 391-421 被引量:1078
标识
DOI:10.3934/jcd.2014.1.391
摘要

Originally introduced in the fluid mechanics community, dynamic mode decomposition (DMD) has emerged as a powerful tool for analyzing the dynamics of nonlinear systems. However, existing DMD theory deals primarily with sequential time series for which the measurement dimension is much larger than the number of measurements taken. We present a theoretical framework in which we define DMD as the eigendecomposition of an approximating linear operator. This generalizes DMD to a larger class of datasets, including nonsequential time series. We demonstrate the utility of this approach by presenting novel sampling strategies that increase computational efficiency and mitigate the effects of noise, respectively. We also introduce the concept of linear consistency, which helps explain the potential pitfalls of applying DMD to rank-deficient datasets, illustrating with examples. Such computations are not considered in the existing literature but can be understood using our more general framework. In addition, we show that our theory strengthens the connections between DMD and Koopman operator theory. It also establishes connections between DMD and other techniques, including the eigensystem realization algorithm (ERA), a system identification method, and linear inverse modeling (LIM), a method from climate science. We show that under certain conditions, DMD is equivalent to LIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
辉@完成签到 ,获得积分10
4秒前
NexusExplorer应助李默庵啊采纳,获得30
4秒前
4秒前
酷波er应助strings采纳,获得10
4秒前
5秒前
6秒前
自信的毛豆完成签到,获得积分10
7秒前
寻道图强应助wang1882采纳,获得50
7秒前
8秒前
Duel发布了新的文献求助10
8秒前
cui发布了新的文献求助10
9秒前
13秒前
16秒前
16秒前
17秒前
共享精神应助木木采纳,获得10
18秒前
无花果应助suhua采纳,获得10
19秒前
七喜发布了新的文献求助10
20秒前
D-Peng完成签到,获得积分10
20秒前
小狐狸发布了新的文献求助10
20秒前
上官若男应助Devil采纳,获得10
21秒前
辉@关注了科研通微信公众号
21秒前
21秒前
ttyj发布了新的文献求助10
22秒前
23秒前
23秒前
D-Peng发布了新的文献求助10
24秒前
Chem完成签到 ,获得积分10
24秒前
李健应助小杰采纳,获得10
26秒前
小小枫叶轻轻而过完成签到,获得积分10
27秒前
27秒前
29秒前
suhua完成签到,获得积分10
29秒前
CipherSage应助小狐狸采纳,获得10
30秒前
包容的思菱完成签到,获得积分10
30秒前
30秒前
cjw11完成签到,获得积分10
33秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138196
求助须知:如何正确求助?哪些是违规求助? 2789101
关于积分的说明 7790287
捐赠科研通 2445509
什么是DOI,文献DOI怎么找? 1300476
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046