A novel hyperspectral-based approach for identification of maize kernels infected with diverse Aspergillus flavus fungi

核(代数) 线性判别分析 高光谱成像 数学 黄曲霉 偏最小二乘回归 统计 模式识别(心理学) 随机森林 人工智能 植物 生物 计算机科学 组合数学
作者
Feifei Tao,Haibo Yao,Zuzana Hruska,Russell Kincaid,Kanniah Rajasekaran,Deepak Bhatnagar
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:200: 415-430 被引量:25
标识
DOI:10.1016/j.biosystemseng.2020.10.017
摘要

Near infrared hyperspectral imaging over the spectral range of 900–2500 nm was investigated for its potential to identify maize kernels inoculated with aflatoxigenic fungus (AF13) from healthy kernels and kernels inoculated with non-aflatoxigenic fungus (AF36). A total of 900 kernels were used with 3 treatments, namely, each 300 kernels inoculated with AF13, AF36 and sterile distilled water as control, separately. One hundred kernels from each treatment of 300 kernels were incubated for 3, 5 and 8 days, to obtain diverse samples. Based on the full mean spectra extracted from the same kernel side(s), the best mean overall prediction accuracies achieved were 96.3% for the 3-class (control, non-aflatoxigenic and aflatoxigenic) classification and 97.8% for the 2-class (aflatoxigenic-negative and -positive) classification using the partial least-squares discriminant analysis (PLS-DA) method. The 3-class and 2-class models using the full mean spectra extracted from different kernel sides had the best mean overall prediction accuracies of 91.5% and 95.1%. Using the most important 30, 55 and 100 variables determined by the random frog (RF) algorithm, the simplified type I-RF-PLSDA models achieved the mean overall prediction accuracies of 87.7%, 93.8% and 95.2% for the 2-class discrimination using different kernel sides’ information. Among the most important 55 and 100 variables, a total of 25 and 67 variables were consistently selected in the 100 random runs and were therefore used further for establishing the type II-RF-PLSDA models. Using these 25 and 67 variables, the type II-RF-PLSDA models obtained the mean overall prediction accuracies of 82.3% and 94.9% separately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1212发布了新的文献求助10
刚刚
111完成签到,获得积分10
刚刚
ddbc完成签到,获得积分10
1秒前
在雨里思考完成签到,获得积分10
1秒前
2秒前
乐乐应助杨小鸿采纳,获得10
3秒前
3秒前
紧张的谷槐完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
幽逸完成签到,获得积分10
4秒前
Szw666完成签到,获得积分10
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
jojo完成签到 ,获得积分10
11秒前
12秒前
lll完成签到,获得积分20
12秒前
VAN发布了新的文献求助10
15秒前
徐小美完成签到,获得积分20
16秒前
传奇3应助lll采纳,获得30
16秒前
老仙翁完成签到,获得积分10
16秒前
lilyz615完成签到,获得积分10
18秒前
19秒前
ding应助听见采纳,获得10
21秒前
21秒前
22秒前
斯文败类应助kuny采纳,获得10
22秒前
77发布了新的文献求助10
23秒前
aniver完成签到 ,获得积分10
24秒前
25秒前
痕丶歆完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
JY完成签到,获得积分10
27秒前
酷波er应助77采纳,获得10
27秒前
开朗啤酒完成签到,获得积分10
28秒前
独特的缘分完成签到,获得积分10
29秒前
震动的听安完成签到,获得积分10
30秒前
调皮语雪完成签到 ,获得积分10
32秒前
大力向南完成签到,获得积分10
32秒前
所所应助xbw采纳,获得10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978