🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

The Variational Bayesian EM Algorithm for Incomplete Data: With Application to Scoring Graphical Model Structures

边际似然 指数族 图形模型 算法 潜变量 数学 概率逻辑 贝叶斯信息准则 贝叶斯概率 数学优化 上下界 计算机科学 应用数学 统计 数学分析
作者
Matthew J. Beal,Zoubin Ghahramani
出处
期刊:Oxford University Press eBooks [Oxford University Press]
卷期号:: 453-463 被引量:454
标识
DOI:10.1093/oso/9780198526155.003.0025
摘要

Abstract We present an efficient procedure for estimating the marginal likelihood of probabilistic models with latent variables or incomplete data. This method constructs and optimizes a lower bound on the marginal likelihood using variational calculus, resulting in an iterative algorithm which generalizes the EM algorithm by maintaining posterior distributions over both latent variables and parameters. We define the family of conjugate-exponential models—which includes finite mixtures of exponential family models, factor analysis, hidden Markov models, linear state-space models, and other models of interest—for which this bound on the marginal likelihood can be computed very simply through a modification of the standard EM algorithm. In particular, we focus on applying these bounds to the problem of scoring discrete directed graphical model structures (Bayesian networks). Extensive simulations comparing the variational bounds to the usual approach based on the Bayesian Information Criterion (BIC) and to a sampling-based gold standard method known as Annealed Importance Sampling (AIS) show that variational bounds substantially outperform BIC in finding the correct model structure at relatively little computational cost, while approaching the performance of the much more costly AIS procedure. Using AIS allows us to provide the first serious case study of the tightness of variational bounds. We also analyze the performance of AIS through a variety of criteria, and outline directions in which this work can be extended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲奇饼干发布了新的文献求助10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
神说应助科研通管家采纳,获得10
1秒前
神说应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得30
2秒前
36456657应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
tengfei完成签到 ,获得积分10
3秒前
4秒前
小羊先生完成签到 ,获得积分10
4秒前
殷勤的凝海完成签到 ,获得积分10
7秒前
酷炫的蓝发布了新的文献求助10
9秒前
10秒前
YiWei完成签到 ,获得积分10
10秒前
眼圆广志完成签到,获得积分10
12秒前
这个大头张呀完成签到,获得积分10
12秒前
14秒前
小果冻完成签到,获得积分10
16秒前
111111关注了科研通微信公众号
16秒前
韩莎莎完成签到,获得积分10
16秒前
Orange应助johnzsin采纳,获得10
16秒前
linger发布了新的文献求助10
17秒前
YJ完成签到,获得积分10
18秒前
didi发布了新的文献求助10
18秒前
韩莎莎发布了新的文献求助10
18秒前
chen同学完成签到 ,获得积分10
21秒前
bean发布了新的文献求助10
22秒前
shineedou发布了新的文献求助10
25秒前
hhhblabla应助韩莎莎采纳,获得10
25秒前
风的季节完成签到,获得积分10
25秒前
qjq琪完成签到 ,获得积分10
26秒前
41完成签到,获得积分10
28秒前
29秒前
bean完成签到,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Comprehensive Computational Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3604173
求助须知:如何正确求助?哪些是违规求助? 3172216
关于积分的说明 9573508
捐赠科研通 2878301
什么是DOI,文献DOI怎么找? 1580900
邀请新用户注册赠送积分活动 743285
科研通“疑难数据库(出版商)”最低求助积分说明 725901