隐马尔可夫模型
估计理论
期望最大化算法
高斯分布
算法
最大似然
混合模型
计算机科学
正向算法
数学
直觉
趋同(经济学)
马尔可夫链
马尔可夫模型
应用数学
人工智能
机器学习
变阶马尔可夫模型
统计
认识论
物理
哲学
经济
量子力学
经济增长
出处
期刊:CTIT technical reports series
日期:1998-01-01
被引量:1110
摘要
We describe the maximum-likelihood parameter estimation problem and how the ExpectationMaximization (EM) algorithm can be used for its solution. We first describe the abstract form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM) (i.e., the Baum-Welch algorithm) for both discrete and Gaussian mixture observation models. We derive the update equations in fairly explicit detail but we do not prove any convergence properties. We try to emphasize intuition rather than mathematical rigor.
科研通智能强力驱动
Strongly Powered by AbleSci AI