清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning in depth: a simple innovation that can transform schooling

简单(哲学) 计算机科学 数学教育 人工智能 认识论 心理学 哲学
作者
Kieran Egan
出处
期刊:Choice Reviews Online [American Library Association]
卷期号:49 (04): 49-2206 被引量:43
标识
DOI:10.5860/choice.49-2206
摘要

For generations, schools have aimed to introduce students to a broad range of topics through curricula that ensure that they will at least have some acquaintance with most areas of human knowledge by the time they graduate. Yet such broad knowledge can't help but be somewhat superficial - and, as Kieran Egan argues, it omits a crucial aspect of true education: deep knowledge. Real education, Egan explains, consists of both general knowledge and detailed understanding, and in Learning in Depth he outlines an ambitious yet practical plan to incorporate deep knowledge into basic education. Under Egan's program, students will follow the usual curriculum, but with one crucial addition: beginning with their first days of school and continuing until graduation, they will each also study one topic - such as apples, birds, sacred buildings, mollusks, circuses, or stars - in depth. Over the years, with the help and guidance of their supervising teacher, students will expand their understanding of their one topic and build portfolios of knowledge that grow and change along with them. By the time they graduate each student will know as much about his or her topic as almost anyone on earth - and in the process will have learned important, even life-changing lessons about the meaning of expertise, the value of dedication, and the delight of knowing something in depth. Though Egan's program may be radical in its effects, it is strikingly simple to implement - as a number of schools have already discovered - and with Learning in Depth as a blueprint, parents, educators, and administrators can instantly begin taking the first steps toward transforming our schools and fundamentally deepening their students' minds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助文艺猫咪采纳,获得10
43秒前
星辰大海应助xun采纳,获得10
1分钟前
krajicek完成签到,获得积分10
1分钟前
1分钟前
1分钟前
许子发布了新的文献求助10
1分钟前
文艺猫咪发布了新的文献求助10
1分钟前
jessicaw完成签到,获得积分10
1分钟前
1分钟前
Ji完成签到,获得积分10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
gwbk完成签到,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
2分钟前
许子完成签到,获得积分10
2分钟前
今后应助Anto采纳,获得10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
缥缈雍发布了新的文献求助20
3分钟前
清净163完成签到,获得积分10
3分钟前
3分钟前
3分钟前
陈纸溪发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
领导范儿应助残月初升采纳,获得10
4分钟前
晴天娃娃完成签到 ,获得积分10
4分钟前
4分钟前
残月初升发布了新的文献求助10
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
wanci应助陈纸溪采纳,获得10
5分钟前
5分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
陈纸溪发布了新的文献求助10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131390
关于积分的说明 9391041
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556360
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715853