A cluster-based method to map urban area from DMSP/OLS nightlights

国防气象卫星计划 城市化 星团(航天器) 环境科学 土地覆盖 遥感 测距 地理 估计 市区 卫星 气象学 土地利用 计算机科学 程序设计语言 管理 经济 经济 土木工程 航空航天工程 工程类 经济增长 大地测量学
作者
Yuyu Zhou,Steven J. Smith,Christopher D. Elvidge,Kaiguang Zhao,Allison M. Thomson,Marc L. Imhoff
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:147: 173-185 被引量:323
标识
DOI:10.1016/j.rse.2014.03.004
摘要

Accurate information on urban areas at regional and global scales is important for both the science and policy-making communities. The Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable light data (NTL) provide a potential way to map the extent and dynamics of urban areas in an economic and timely manner. In this study, we developed a cluster-based method to estimate optimal thresholds and map urban extent from the DMSP/OLS NTL data in five major steps, including data preprocessing, urban cluster segmentation, logistic model development, threshold estimation, and urban extent delineation. In our method the optimal thresholds vary by clusters and are estimated based on cluster size and overall nightlight magnitude. The United States and China, two large countries with different urbanization patterns, were selected to test the proposed method. Our results indicate that the urbanized area occupies about 2% of total land area in the US, ranging from lower than 0.5% to higher than 10% at the state level, and less than 1% in China, ranging from lower than 0.1% to about 5% at the province level with some municipalities as high as 10%. The derived thresholds and urban extent were evaluated using a validation sub-sample of high-resolution land cover data at the cluster and regional levels. It was found that our method can map urban areas in both countries efficiently and accurately. The sensitivity analysis indicates that the derived optimal thresholds are not highly sensitive to the parameter choices in the logistic model. Our method reduces the over- and under-estimation issues often associated with previous fixed-threshold techniques when mapping urban extent over a large area. More importantly, our method shows potential to map global urban extent and temporal dynamics using the DMSP/OLS NTL data in a timely, cost-effective way.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qing2010完成签到 ,获得积分10
1秒前
布丁完成签到 ,获得积分10
2秒前
搜集达人应助执着的忆雪采纳,获得10
2秒前
3秒前
wll发布了新的文献求助10
4秒前
毛豆应助刻苦蚂蚁采纳,获得10
5秒前
三石发布了新的文献求助30
5秒前
pluto应助研友_xnEOX8采纳,获得50
7秒前
7秒前
脆弱的仙人掌完成签到,获得积分10
8秒前
8秒前
xl完成签到 ,获得积分10
8秒前
龑龍天发布了新的文献求助10
8秒前
9秒前
aceman发布了新的文献求助10
9秒前
9秒前
yolo39应助Bertie采纳,获得10
10秒前
文静三颜发布了新的文献求助10
10秒前
搜集达人应助玩命的学姐采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
zouzou应助科研通管家采纳,获得20
11秒前
英姑应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
无餍应助科研通管家采纳,获得20
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
linghanlan应助科研通管家采纳,获得20
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
藤椒辣鱼应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663