趋化因子
细胞生物学
生物
免疫学
细胞因子
嗜酸性粒细胞
免疫系统
哮喘
作者
Marı́a López-Bravo,María Minguito de la Escalera,Pilar M. Domínguez,Leticia González-Cintado,Carlos del Fresno,Pilar Martı́n,Gloria Martı́nez del Hoyo,Carlos Ardavı́n
标识
DOI:10.1016/j.jaci.2013.08.039
摘要
BackgroundWhereas recent research has characterized the mechanism by which dendritic cells (DCs) induce TH1/TH17 responses, the functional specialization enabling DCs to polarize TH2 responses remains undefined. Because IL-4 is essential during TH2 responses not only by acting on CD4+ T cells through the activation of GATA-3 but also by regulating IgE class-switching, epithelial cell permeability, and muscle contractility, we hypothesized that IL-4 could also have a role in the conditioning of DCs during TH2 responses.ObjectiveWe sought to analyze whether IL-4 exerts an immunomodulatory function on DCs during their differentiation, leading to their functional specialization for the induction of TH2 responses.MethodsMonocyte-derived DCs (moDCs) conditioned by IL-4 during their differentiation (IL-4–conditioned moDCs [IL-4–moDCs]) were analyzed for TH1-polarizing/inflammatory cytokine production in response to Toll-like receptor stimulation. The acetylation level of the promoters of the genes encoding these cytokines was analyzed by using chromatin immunoprecipitation. Gene expression profiling of IL-4–moDCs was defined by using mouse genome microarrays. IL-4–moDCs were tested for their capacity to induce house dust mite–mediated allergic reactions.ResultsOur data suggest that IL-4 inhibits TH1-polarizing/inflammatory cytokine gene expression on IL-4–moDCs through the deacetylation of the promoters of these genes, leading to their transcriptional repression. Microarray analyses confirmed that IL-4 upregulated TH2-related genes as eosinophil-associated ribonucleases, eosinophil/basophil chemokines, and M2 genes. IL-4 licensed moDCs for the induction of TH2 responses, causing house dust mite–mediated allergic airway inflammation.ConclusionThis study describes a new role for IL-4 by demonstrating that moDCs are conditioned by IL-4 for the induction of TH2 responses by blocking TH1-polarizing/inflammatory cytokine production through histone hypoacetylation and upregulating TH2-related genes. Whereas recent research has characterized the mechanism by which dendritic cells (DCs) induce TH1/TH17 responses, the functional specialization enabling DCs to polarize TH2 responses remains undefined. Because IL-4 is essential during TH2 responses not only by acting on CD4+ T cells through the activation of GATA-3 but also by regulating IgE class-switching, epithelial cell permeability, and muscle contractility, we hypothesized that IL-4 could also have a role in the conditioning of DCs during TH2 responses. We sought to analyze whether IL-4 exerts an immunomodulatory function on DCs during their differentiation, leading to their functional specialization for the induction of TH2 responses. Monocyte-derived DCs (moDCs) conditioned by IL-4 during their differentiation (IL-4–conditioned moDCs [IL-4–moDCs]) were analyzed for TH1-polarizing/inflammatory cytokine production in response to Toll-like receptor stimulation. The acetylation level of the promoters of the genes encoding these cytokines was analyzed by using chromatin immunoprecipitation. Gene expression profiling of IL-4–moDCs was defined by using mouse genome microarrays. IL-4–moDCs were tested for their capacity to induce house dust mite–mediated allergic reactions. Our data suggest that IL-4 inhibits TH1-polarizing/inflammatory cytokine gene expression on IL-4–moDCs through the deacetylation of the promoters of these genes, leading to their transcriptional repression. Microarray analyses confirmed that IL-4 upregulated TH2-related genes as eosinophil-associated ribonucleases, eosinophil/basophil chemokines, and M2 genes. IL-4 licensed moDCs for the induction of TH2 responses, causing house dust mite–mediated allergic airway inflammation. This study describes a new role for IL-4 by demonstrating that moDCs are conditioned by IL-4 for the induction of TH2 responses by blocking TH1-polarizing/inflammatory cytokine production through histone hypoacetylation and upregulating TH2-related genes.
科研通智能强力驱动
Strongly Powered by AbleSci AI