清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales

高光谱成像 激光雷达 遥感 随机森林 比例(比率) 支持向量机 树冠 植被(病理学) 环境科学 树(集合论) 成像光谱学 地理 天蓬 计算机科学 地图学 人工智能 数学 数学分析 病理 医学 考古
作者
Aniruddha Ghosh,Fabian Ewald Fassnacht,P. K. Joshi,Barbara Koch
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:26: 49-63 被引量:311
标识
DOI:10.1016/j.jag.2013.05.017
摘要

Knowledge of tree species distribution is important worldwide for sustainable forest management and resource evaluation. The accuracy and information content of species maps produced using remote sensing images vary with scale, sensor (optical, microwave, LiDAR), classification algorithm, verification design and natural conditions like tree age, forest structure and density. Imaging spectroscopy reduces the inaccuracies making use of the detailed spectral response. However, the scale effect still has a strong influence and cannot be neglected. This study aims to bridge the knowledge gap in understanding the scale effect in imaging spectroscopy when moving from 4 to 30 m pixel size for tree species mapping, keeping in mind that most current and future hyperspectral satellite based sensors work with spatial resolution around 30 m or more. Two airborne (HyMAP) and one spaceborne (Hyperion) imaging spectroscopy dataset with pixel sizes of 4, 8 and 30 m, respectively were available to examine the effect of scale over a central European forest. The forest under examination is a typical managed forest with relatively homogenous stands featuring mostly two canopy layers. Normalized digital surface model (nDSM) derived from LiDAR data was used additionally to examine the effect of height information in tree species mapping. Six different sets of predictor variables (reflectance value of all bands, selected components of a Minimum Noise Fraction (MNF), Vegetation Indices (VI) and each of these sets combined with LiDAR derived height) were explored at each scale. Supervised kernel based (Support Vector Machines) and ensemble based (Random Forest) machine learning algorithms were applied on the dataset to investigate the effect of the classifier. Iterative bootstrap-validation with 100 iterations was performed for classification model building and testing for all the trials. For scale, analysis of overall classification accuracy and kappa values indicated that 8 m spatial resolution (reaching kappa values of over 0.83) slightly outperformed the results obtained from 4 m for the study area and five tree species under examination. The 30 m resolution Hyperion image produced sound results (kappa values of over 0.70), which in some areas of the test site were comparable with the higher spatial resolution imagery when qualitatively assessing the map outputs. Considering input predictor sets, MNF bands performed best at 4 and 8 m resolution. Optical bands were found to be best for 30 m spatial resolution. Classification with MNF as input predictors produced better visual appearance of tree species patches when compared with reference maps. Based on the analysis, it was concluded that there is no significant effect of height information on tree species classification accuracies for the present framework and study area. Furthermore, in the examined cases there was no single best choice among the two classifiers across scales and predictors. It can be concluded that tree species mapping from imaging spectroscopy for forest sites comparable to the one under investigation is possible with reliable accuracies not only from airborne but also from spaceborne imaging spectroscopy datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥的婷冉完成签到,获得积分10
8秒前
16秒前
Mine完成签到,获得积分10
19秒前
23秒前
1分钟前
2分钟前
jyy应助FUNG采纳,获得10
2分钟前
3分钟前
慧喆完成签到 ,获得积分10
3分钟前
刘佳佳完成签到 ,获得积分10
3分钟前
YANGLan完成签到,获得积分10
3分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
FUNG发布了新的文献求助10
5分钟前
肆肆完成签到,获得积分10
5分钟前
Tei完成签到,获得积分10
6分钟前
xaopng完成签到,获得积分10
6分钟前
小西完成签到 ,获得积分10
6分钟前
Anan完成签到,获得积分10
8分钟前
木南大宝完成签到 ,获得积分10
8分钟前
乐乐应助Anan采纳,获得10
8分钟前
9分钟前
Anan发布了新的文献求助10
9分钟前
9分钟前
去去去去发布了新的文献求助10
9分钟前
科研通AI2S应助去去去去采纳,获得10
9分钟前
紫熊完成签到,获得积分10
11分钟前
joe完成签到 ,获得积分0
11分钟前
oracl完成签到 ,获得积分10
12分钟前
lilili发布了新的文献求助10
13分钟前
所所应助HudaBala采纳,获得10
13分钟前
辛勤的小海豚完成签到,获得积分10
13分钟前
lilili完成签到,获得积分10
13分钟前
墨海完成签到 ,获得积分10
14分钟前
iuv关闭了iuv文献求助
15分钟前
科研搬运工完成签到,获得积分10
16分钟前
上官若男应助司空天德采纳,获得10
16分钟前
iuv发布了新的文献求助10
16分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
16分钟前
今后应助kingqjack采纳,获得10
17分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335