已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales

高光谱成像 激光雷达 遥感 随机森林 比例(比率) 支持向量机 树冠 植被(病理学) 环境科学 树(集合论) 成像光谱学 地理 天蓬 计算机科学 地图学 人工智能 数学 医学 数学分析 考古 病理
作者
Aniruddha Ghosh,Fabian Ewald Fassnacht,P. K. Joshi,Barbara Koch
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:26: 49-63 被引量:311
标识
DOI:10.1016/j.jag.2013.05.017
摘要

Knowledge of tree species distribution is important worldwide for sustainable forest management and resource evaluation. The accuracy and information content of species maps produced using remote sensing images vary with scale, sensor (optical, microwave, LiDAR), classification algorithm, verification design and natural conditions like tree age, forest structure and density. Imaging spectroscopy reduces the inaccuracies making use of the detailed spectral response. However, the scale effect still has a strong influence and cannot be neglected. This study aims to bridge the knowledge gap in understanding the scale effect in imaging spectroscopy when moving from 4 to 30 m pixel size for tree species mapping, keeping in mind that most current and future hyperspectral satellite based sensors work with spatial resolution around 30 m or more. Two airborne (HyMAP) and one spaceborne (Hyperion) imaging spectroscopy dataset with pixel sizes of 4, 8 and 30 m, respectively were available to examine the effect of scale over a central European forest. The forest under examination is a typical managed forest with relatively homogenous stands featuring mostly two canopy layers. Normalized digital surface model (nDSM) derived from LiDAR data was used additionally to examine the effect of height information in tree species mapping. Six different sets of predictor variables (reflectance value of all bands, selected components of a Minimum Noise Fraction (MNF), Vegetation Indices (VI) and each of these sets combined with LiDAR derived height) were explored at each scale. Supervised kernel based (Support Vector Machines) and ensemble based (Random Forest) machine learning algorithms were applied on the dataset to investigate the effect of the classifier. Iterative bootstrap-validation with 100 iterations was performed for classification model building and testing for all the trials. For scale, analysis of overall classification accuracy and kappa values indicated that 8 m spatial resolution (reaching kappa values of over 0.83) slightly outperformed the results obtained from 4 m for the study area and five tree species under examination. The 30 m resolution Hyperion image produced sound results (kappa values of over 0.70), which in some areas of the test site were comparable with the higher spatial resolution imagery when qualitatively assessing the map outputs. Considering input predictor sets, MNF bands performed best at 4 and 8 m resolution. Optical bands were found to be best for 30 m spatial resolution. Classification with MNF as input predictors produced better visual appearance of tree species patches when compared with reference maps. Based on the analysis, it was concluded that there is no significant effect of height information on tree species classification accuracies for the present framework and study area. Furthermore, in the examined cases there was no single best choice among the two classifiers across scales and predictors. It can be concluded that tree species mapping from imaging spectroscopy for forest sites comparable to the one under investigation is possible with reliable accuracies not only from airborne but also from spaceborne imaging spectroscopy datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的飞丹完成签到,获得积分10
3秒前
xiaoya完成签到,获得积分20
4秒前
5秒前
ZT完成签到,获得积分20
5秒前
Spencer完成签到 ,获得积分10
6秒前
谨慎的友安完成签到 ,获得积分10
6秒前
文渊完成签到,获得积分0
8秒前
个性紫完成签到 ,获得积分10
8秒前
CipherSage应助蓝桉采纳,获得10
9秒前
wildeager完成签到,获得积分10
9秒前
Chaos完成签到 ,获得积分10
9秒前
曾经的电脑完成签到 ,获得积分10
10秒前
a553355发布了新的文献求助10
10秒前
10秒前
只如初完成签到 ,获得积分10
11秒前
唐tang完成签到,获得积分10
11秒前
努力的咩咩完成签到 ,获得积分10
11秒前
遇上就这样吧完成签到,获得积分0
13秒前
cheng完成签到,获得积分10
13秒前
余邴完成签到 ,获得积分10
14秒前
pterionGao完成签到 ,获得积分10
14秒前
HEHNJJ完成签到,获得积分10
15秒前
书中魂我自不理会完成签到 ,获得积分10
15秒前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
15秒前
白斯特发布了新的文献求助10
16秒前
毕个业完成签到 ,获得积分10
16秒前
Zhouzhou发布了新的文献求助20
17秒前
淡定井完成签到 ,获得积分10
17秒前
17秒前
大模型应助科研雪瑞采纳,获得10
18秒前
zyf完成签到,获得积分10
19秒前
AmbitionY完成签到,获得积分10
19秒前
xingxing完成签到 ,获得积分10
21秒前
慎二完成签到 ,获得积分10
21秒前
无限的寄真完成签到 ,获得积分10
22秒前
11111完成签到 ,获得积分10
22秒前
gwh完成签到 ,获得积分10
24秒前
涂楚捷完成签到,获得积分10
25秒前
kenti2023完成签到 ,获得积分10
26秒前
陈里里完成签到 ,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959930
求助须知:如何正确求助?哪些是违规求助? 3506191
关于积分的说明 11128233
捐赠科研通 3238160
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024