Use of Real-Time Light Scattering Data To Estimate the Contribution of Infiltrated and Indoor-Generated Particles to Indoor Air

环境科学 室内空气 室内空气质量 大气科学 渗透(HVAC) 微粒 审查(临床试验) 航程(航空) 环境工程 气象学 土壤科学 统计 数学 地理 材料科学 物理 化学 复合材料 有机化学
作者
Ryan Allen,Timothy V. Larson,Lianne Sheppard,Lance Wallace,L J Sally Liu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:37 (16): 3484-3492 被引量:182
标识
DOI:10.1021/es021007e
摘要

The contribution of outdoor particulate matter (PM) to residential indoor concentrations is currently not well understood. Most importantly, separating indoor PM into indoor- and outdoor-generated components will greatly enhance our knowledge of the outdoor contribution to total indoor and personal PM exposures. This paper examines continuous light scattering data at 44 residences in Seattle, WA. A newly adapted recursive model was used to model outdoor-originated PM entering indoor environments. After censoring the indoor time-series to remove the influence of indoor sources, nonlinear regression was used to estimate particle penetration (P, 0.94 +/- 0.10), air exchange rate (a, 0.54 +/- 0.60 h(-1)), particle decay rate (k, 0.20 +/- 0.16 h(-1)), and particle infiltration (F(inf), 0.65 +/- 0.21) for each of the 44 residences. All of these parameters showed seasonal differences. The F(inf) estimates agree well with those estimated from the sulfur-tracer method (R2 = 0.78). The F(inf) estimates also showed robust and expected behavior when compared against known influencing factors. Among our study residences, outdoor-generated particles accounted for an average of 79 +/- 17% of the indoor PM concentration, with a range of 40-100% at individual residences. Although estimates of P, a, and k were dependent on the modeling technique and constraints, we showed that a recursive mass balance model combined with our censoring algorithms can be used to attribute indoor PM into its outdoor and indoor components and to estimate an average P, a, k, and F(inf), for each residence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wmn完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Ry0_完成签到,获得积分10
4秒前
沉静冰夏完成签到 ,获得积分10
4秒前
Desperado完成签到,获得积分10
4秒前
贾克斯发布了新的文献求助10
5秒前
5秒前
江苏大学完成签到,获得积分20
5秒前
完美世界应助明月清风采纳,获得10
5秒前
可爱的函函应助刘恋采纳,获得10
5秒前
浮游应助抽疯的电风扇13采纳,获得10
6秒前
123完成签到,获得积分10
6秒前
Lucas完成签到,获得积分10
6秒前
荷京发布了新的文献求助10
7秒前
cjjcdt发布了新的文献求助10
8秒前
8秒前
9秒前
Tian发布了新的文献求助10
9秒前
大模型应助懵懂的冰凡采纳,获得10
10秒前
完美世界应助研友_enP05n采纳,获得10
10秒前
丘比特应助研友_enP05n采纳,获得10
10秒前
科目三应助研友_enP05n采纳,获得10
10秒前
13秒前
可爱的函函应助贾克斯采纳,获得10
13秒前
丘比特应助你雕姐采纳,获得10
13秒前
ceeray23发布了新的文献求助20
13秒前
CodeCraft应助自由抽屉采纳,获得10
13秒前
华仔应助pogia采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
lucky应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
14秒前
今后应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得100
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079