Use of Real-Time Light Scattering Data To Estimate the Contribution of Infiltrated and Indoor-Generated Particles to Indoor Air

环境科学 室内空气 室内空气质量 大气科学 渗透(HVAC) 微粒 审查(临床试验) 航程(航空) 环境工程 气象学 土壤科学 统计 数学 地理 材料科学 物理 化学 复合材料 有机化学
作者
Ryan Allen,Timothy V. Larson,Lianne Sheppard,Lance Wallace,L J Sally Liu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:37 (16): 3484-3492 被引量:182
标识
DOI:10.1021/es021007e
摘要

The contribution of outdoor particulate matter (PM) to residential indoor concentrations is currently not well understood. Most importantly, separating indoor PM into indoor- and outdoor-generated components will greatly enhance our knowledge of the outdoor contribution to total indoor and personal PM exposures. This paper examines continuous light scattering data at 44 residences in Seattle, WA. A newly adapted recursive model was used to model outdoor-originated PM entering indoor environments. After censoring the indoor time-series to remove the influence of indoor sources, nonlinear regression was used to estimate particle penetration (P, 0.94 +/- 0.10), air exchange rate (a, 0.54 +/- 0.60 h(-1)), particle decay rate (k, 0.20 +/- 0.16 h(-1)), and particle infiltration (F(inf), 0.65 +/- 0.21) for each of the 44 residences. All of these parameters showed seasonal differences. The F(inf) estimates agree well with those estimated from the sulfur-tracer method (R2 = 0.78). The F(inf) estimates also showed robust and expected behavior when compared against known influencing factors. Among our study residences, outdoor-generated particles accounted for an average of 79 +/- 17% of the indoor PM concentration, with a range of 40-100% at individual residences. Although estimates of P, a, and k were dependent on the modeling technique and constraints, we showed that a recursive mass balance model combined with our censoring algorithms can be used to attribute indoor PM into its outdoor and indoor components and to estimate an average P, a, k, and F(inf), for each residence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
doudou完成签到 ,获得积分10
刚刚
BCS完成签到,获得积分10
刚刚
领导范儿应助KYN采纳,获得10
刚刚
1秒前
独特的莫言完成签到,获得积分10
3秒前
lin发布了新的文献求助10
4秒前
aero完成签到 ,获得积分10
6秒前
123号完成签到,获得积分10
8秒前
充电宝应助TT采纳,获得10
10秒前
11秒前
11秒前
英姑应助荒野星辰采纳,获得10
13秒前
13秒前
YHY完成签到,获得积分10
15秒前
科研通AI5应助魏伯安采纳,获得10
15秒前
caoyy发布了新的文献求助10
15秒前
16秒前
17秒前
张喻235532完成签到,获得积分10
18秒前
失眠虔纹发布了新的文献求助10
19秒前
香蕉觅云应助糊涂的小伙采纳,获得10
19秒前
19秒前
sutharsons应助科研通管家采纳,获得200
21秒前
打打应助科研通管家采纳,获得10
21秒前
axin应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
21秒前
李健应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
22秒前
lu应助科研通管家采纳,获得10
22秒前
22秒前
华仔应助科研通管家采纳,获得10
22秒前
研友_MLJldZ发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849