Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks

人工神经网络 极限抗拉强度 材料科学 复合材料 抗压强度 反向传播 骨料(复合)
作者
Moosa Mazloom,M.M. Yoosefi
出处
期刊:Computers and Concrete 卷期号:12 (3): 285-301 被引量:10
标识
DOI:10.12989/cac.2013.12.3.285
摘要

This paper concentrates on the results of experimental work on tensile strength of self-compacting concrete (SCC) caused by flexure, which is called rupture modulus. The work focused on concrete mixes having water/binder ratios of 0.35 and 0.45, which contained constant total binder contents of 500 kg/m3 and 400 kg/m3, respectively. The concrete mixes had four different dosages of a superplasticizer based on polycarboxylic with and without silica fume. The percentage of silica fume that replaced cement in this research was 10%. Based upon the experimental results, the existing equations for anticipating the rupture modulus of SCC according to its compressive strength were not exact enough. Therefore, it is decided to use artificial neural networks (ANN) for anticipating the rupture modulus of SCC from its compressive strength and workability. The conclusion was that the multi layer perceptron (MLP) networks could predict the tensile strength in all conditions, but radial basis (RB) networks were not exact enough in some circumstances. On the other hand, RB networks were more users friendly and they converged to the final networks quicker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MoNeng完成签到,获得积分10
3秒前
山屿发布了新的文献求助10
4秒前
yyy完成签到,获得积分10
4秒前
丘比特应助Jasony采纳,获得10
4秒前
yy发布了新的文献求助10
5秒前
现代从寒发布了新的文献求助20
6秒前
风中忆秋完成签到,获得积分10
7秒前
天天快乐应助陈小宇kk采纳,获得10
8秒前
Bella发布了新的文献求助10
8秒前
9秒前
鱼鱼鱼发布了新的文献求助10
9秒前
风中忆秋发布了新的文献求助10
10秒前
张行完成签到,获得积分10
11秒前
鹿友菌完成签到,获得积分10
12秒前
1_a发布了新的文献求助10
13秒前
打打应助司马白晴采纳,获得10
13秒前
清脆的幻竹完成签到,获得积分20
13秒前
13秒前
145完成签到,获得积分10
13秒前
细腻的谷秋完成签到 ,获得积分10
15秒前
16秒前
子车茗应助科研通管家采纳,获得30
16秒前
葡萄干应助科研通管家采纳,获得50
16秒前
copyaa应助科研通管家采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得30
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得30
17秒前
fillippo99应助科研通管家采纳,获得20
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
华仔应助充满繁星的夜采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得30
17秒前
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
暴躁四叔应助科研通管家采纳,获得10
17秒前
tianmeng应助科研通管家采纳,获得10
17秒前
LRRAM_809应助科研通管家采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得30
18秒前
踏雪寻梅应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464463
求助须知:如何正确求助?哪些是违规求助? 3057839
关于积分的说明 9058737
捐赠科研通 2747955
什么是DOI,文献DOI怎么找? 1507640
科研通“疑难数据库(出版商)”最低求助积分说明 696627
邀请新用户注册赠送积分活动 696248